首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trehalose-6-phosphate (T-6-P) synthetase activity in extracts of Dictyostelium discoideum has been reexamined in an effort to resolve discrepancies between the results of previous studies (R. Roth and M. Sussman (1966). Biochim. Biophys. Acta, 122, 225; K. A. Killick and B. E. Wright (1972). J. Biol. Chem., 247, 2967). We find that T-6-P synthetase is not cold sensitive as reported by Killick and Wright (1972), is not present in bacterial-grown vegetative cells (though subject to some modulation by other nutritional conditions), and is not in our hands unmasked or activated by ammonium sulfate fractionation. We conclude that the pattern of T-6-P synthetase accumulation and disappearance during fruiting body construction in D. discoideum is as originally described by R. Roth and M. Sussman (1968). J. Biol. Chem., 243, 5081) and confirmed elsewhere (P. C. Newell et al. (1972). J. Mol. Biol., 63, 373; R. W. Brackenbury et al. (1974). J. Mol. Biol., 90, 529; B. D. Hames and J. M. Ashworth (1974). Biochem. J., 142, 301).  相似文献   

2.
Treatment of malic enzyme with arginine-specific reagents phenylglyoxal or 2,3-butanedione results in pseudo-first-order loss of oxidative decarboxylase activity. Inactivation by phenylglyoxal is completely prevented by saturating concentrations of NADP+, Mn2+, and substrate analog hydroxymalonate. Double log plots of pseudo-first-order rate constant versus concentration yield straight lines with identical slopes of unity for both reagents, suggesting that reaction of one molecule of reagent per active site is associated with activity loss. In parallel experiments, complete inactivation is accompanied by the incorporation of four [14C]phenylglyoxal molecules, and the loss of two arginyl residues per enzyme subunit, as determined by the colorimetric method of Yamasaki et al (R. B. Yamasaki, D. A. Shimer, and R. E. Feeney (1981) Anal. Biochem., 14, 220–226). These results confirm a 2:1 ratio for the reaction between phenylglyoxal and arginine (K. Takahashi (1968) J. Biol. Chem., 243, 6171–6179) and yield a stoichiometry of two arginine residues reacted per subunit for complete inactivation, of which one is essential for enzyme activity as determined by the statistical method of Tsou (C. L. Tsou (1962) Acta Biochim. Biophys. Sinica, 2, 203–211) and the Ray and Koshland analysis (W. J. Ray and D. E. Koshland (1961) J. Biol. Chem., 236, 1973–1979). Amino acid analysis of butanedione-modified enzyme also shows loss of arginyl residues, without significant decrease in other amino acids. Modification by phenylglyoxal does not significantly affect the affinity of this enzyme for NADPH. Binding of l-malate and its dicarboxylic acid analogs oxalate and tartronate is abolished upon modification, as is binding of the monocarboxylic acid α-hydroxybutyrate. The latter result indicates binding of the C-1 carboxyl group of the substrate to an arginyl residue on the enzyme.  相似文献   

3.
This note considers sampling theory for a selectively neutral locus where it is supposed that the data provide nucleotide sequences for the genes sampled. It thus anticipates that technical advances will soon provide data of this form in volume approaching that currently obtained from electrophoresis. The assumption made on the nature of the data will require us to use, in the terminology ofKimura (Theor. Pop. Biol.2, 174–208 (1971)), the “infinite sites” model of Karlin and McGregor (Proc. Fifth Berkeley Symp. Math. Statist. Prob.4, 415–438 (1967)) rather that the “infinite alleles” model of Kimura and Crow (Genetics49, 174–738 (1964)). We emphasize that these two models refer not to two different real-world circumstances, but rather to two different assumptions concerning our capacity to investigate the real world. We compare our results where appropriate with corresponding sampling theory of Ewens (Theor. Pop. Biol.3, 87–112 (1972)) for the “infinite alleles” model. Note finally that some of our results depend on an assumption of independence of behavior at individual sites; a parallel paper byWatterson (submitted for publication (1974)) assumes no recombination between sites. Real-world behavior will lie between these two assumptions, closer to the situation assumed by Watterson than in this note. Our analysis provides upper bounds for increased efficiency in using complete nucleotide sequences.  相似文献   

4.
Using nine different l-aminoacyl-4-nitroanilides and four different dipeptidyl-4-nitroanilides, aminopeptidases and dipeptidyl aminopeptidases active at pH 7.5 and (or) pH 5.5 in logarithmically growing and stationary-phase cells of Saccharomyces cerevisiae were searched for. Ion-exchange chromatography was used to separate the proteins of the soluble cell extract. Besides the three already-characterized aminopeptidases—aminopeptidase I (P. Matile, A. Wiemken, and W. Guyer (1971) Planta (Berlin)96, 43–53; J. Frey and K. H. Röhm (1978) Biochim. Biophys. Acta527, 31–41), aminopeptidase II (J. Frey and K. H. Röhm (1978) Biochim. Biophys. Acta527, 31–41; J. Knüver (1982) Thesis, Fachbereich Chemie, Marburg, FRG), and aminopeptidase Co (T. Achstetter, C. Ehmann, and D. H. Wolf (1982) Biochem. Biophys. Res. Commun.109, 341–347)—12 additional aminopeptidase activities are found in soluble cell extracts eluting from the ion-exchange column. These activities differ from the characterized aminopeptidases in one or more of the parameters such as charge, size, substrate specificity, inhibition pattern, pH optimum for activity and regulation. Also, a particulate aminopeptidase, called aminopeptidase P, is found in the nonsoluble fraction of disintegrated cells. Besides the described particulate X-prolyl-dipeptidyl aminopeptidase (M. P. Suarez Rendueles, J. Schwencke, N. Garcia-Alvarez and S. Gascon (1981) FEBS Lett.131, 296–300), three additional dipeptidyl aminopeptidase activities of different substrate specificities are found in the soluble extract.  相似文献   

5.
Migrating cells possess surface glycosyltransferase activity toward extracellular substrates, and the appearance of enzyme activity coincides with the onset of cellular migration (Shur, 1977a, Shur, 1977b, Develop. Biol.58, 23–39, 40–55; E. A. Turley and S. Roth, 1979, Cell17, 109–115). In this paper, surface glycosyltransferases were examined during normal and TT mutant mesenchyme migration. Of six glycosyltransferases that were assayed, only galactosyltransferase was present at significant levels on the cell surface, despite the presence of a variety of intracellular glycosyltransferases. All controls have been performed to show clearly the enzyme activity was cell surface localized. In both normal and TT embryos, surface galactosyltransferase activity was localized, by autoradiography, primarily to migrating mesenchymal cells, and to a lesser degree, to presumptive neural epithelium. During primitive streak formation, putative TT embryos were devoid of surface galactosyltransferase activity. However, as development progressed, the TT level of activity eventually exceeded wild-type levels by two- to sixfold and was evident in TT tissues prior to the onset of microscopic pathology. Other surface enzymes assayed did not show any TT-dependent increase in activity. The extracellular galactosyl acceptors were not chloroform:methanol soluble, and glycopeptides prepared by exhaustive Pronase digestion were excluded from Sephadex G-50. This large galactosylated glycoconjugate was readily digestable with endo-β-galactosidase, and, therefore, is similar to the poly-N-acetyllactosamine chains previously identified on early embryonic tissues (A. Kapadia, T. Feizi, and M. J. Evans, 1981, Exp. Cell. Res.131, 185–195; T. Muramatsu, G. Gachelin, M. Damonneville, C. Delarbre, and F. Jacob, 1979, Cell18, 183–191; A. Heifetz, W. J. Lennarz, B. Libbus, and Y. -C. Hsu, 1980, Develop. Biol.80, 398–408). These results support an involvement of surface galactosyltransferases in mesenchyme formation and during migration on poly-N-acetyllactosamine substrates.  相似文献   

6.
The adenylate cyclase system in the plasma membrane of fat cells contains regulatory components that either stimulate or inhibit activity in response to ligands acting at the cell surface. GTP is required for both the stimulation by various hormones (catecholamines and peptide hormones) and the inhibition by adenosine. We have analyzed the effects of high-energy radiation on the stimulatory and inhibitory processes and conclude that these processes are mediated by structures of different functional size. Moreover, the fat cell cyclase system, when analyzed under conditions in which the inhibitory action of GTP is minimally expressed, displays targets of the same size as those previously observed for those involved in the activation of the hepatic enzyme by glucagon and guanine nucleotides (W. Schlegel, E. S. Kempner, and M. Rodbell, 1979, J. Biol. Chem.254, 5168–5176). These findings extend our recent evidence for the nonidentity of the two GTP-mediated processes (D. M. F. Cooper, W. Schlegel, M. C. Lin, and M. Rodbell, 1979, J. Biol. Chem.254, 8927–8931).  相似文献   

7.
Price's (1970) covariance theorem can be used to derive an expression for gene frequency change in kin selection models in which the fitness effect of an act is independent of the genotype of the recipient. This expression defines a coefficient of relatedness which subsumes r(Wright, 1922), b(Hamilton, 1972), ρ (Orlove &; Wood, 1978), and R(Michod &; Hamilton, 1980). The new coefficient extends the domain of Hamilton's rule to models in which the average gene frequency of actors differs from that of recipients.  相似文献   

8.
The pH dependence of proton uptake upon binding of NADH to porcine heart mitochondrial malate dehydrogenase (l-malate: NAD+ oxidoreductase, EC 1.1.1.37) has been investigated. The enzyme has been shown to exhibit a pH-dependent uptake of protons upon binding NADH at pH values from 6.0 to 8.5. Enzyme in which one histidine residue has been modified per subunit by the reagent iodoacetamide (E. M. Gregory, M. S. Rohrbach, and J. H. Harrison, 1971, Biochim. Biophys. Acta253, 489–497) was used to establish that this specific histidine residue was responsible for the uptake of a proton upon binding of NADH to the native enzyme. It has also been established that while there is no enhancement of the nucleotide fluorescence upon addition of NADH to the iodoacetamide-modified enzyme, NADH is nevertheless binding to the modified enzyme with the same stoichiometry as with native enzyme. The data are discussed in relation to the involvement of the essential histidine residue in the catalytic mechanism of “histidine dehydrogenases” recently proposed by Lodola et al. (A. Lodola, D. M. Parker, R. Jeck, and J. J. Holbrook, 1978, Biochem. J.173, 597–605) and the catalytic mechanism of “malate dehydrogenases” recently proposed by L. H. Bernstein and J. Everse (1978, J. Biol. Chem.253, 8702–8707).  相似文献   

9.
The recent assertion of J. Diguiseppi and I. Fridovich (1980, Arch. Biochem. Biophys., 203, 145–150) that Fe-EDTA does not catalyze superoxide dismutation is disputed. By directly observing superoxide generated during pulse radiolysis, we have confirmed the results of a previous study (G. J. McClune, J. A. Fee, G. A. McClusky, and J. T. Groves, 1977, J. Amer. Chem. Soc., 99, 5220–5222) which concluded that Fe-EDTA catalyzed superoxide dismutation. We also demonstrate that the reaction of Fe(II)-EDTA, formed during catalyzed superoxide dismutation, with cytochrome c, the probe molecule in the cytochrome c/xanthine oxidase/xanthine assay system for superoxide dismutase activity, is sufficiently rapid (H. L. Hodges, R. A. Holwerda, and H. B. Gray, 1974, J. Amer. Chem. Soc., 96, 3132–3137) to obscure the weak catalysis of superoxide dismutation by Fe-EDTA.  相似文献   

10.
Murine plasmacytoma endoplasmic reticulum which has been freed of ribosomes by EDTA treatment is capable of the cotranslational proteolytic processing of representative λ12, and k immunoglobulin light chain precursors. Messenger RNA fractions from the MOPC-104E, MOPC-315, and MOPC-46B tumor lines were used to direct the synthesis of the light chain precursors in a cell-free system derived from Krebs II ascites cells. The precursor cleavage activity of the plasmacytoma membranes is comparable in activity and in characteristics to that of two well-defined membrane preparations: Krebs II ascites intracellular membranes (E. Szczesna and I. Boime, 1976, Proc. Nat. Acad. Sci. USA73, 1179–1183) and EDTA-treated rough endoplasmic reticulum from canine pancreas (34., 35., J. Cell Biol.67, 852–862). The efficiency of the cleavage reaction appears to be dependent upon the precursor being utilized as a substrate. An assay suitable for a preliminary characterization of the plasmacytoma membrane preparations is described.  相似文献   

11.
The rapid reaction of diisopropylfluorophosphate with a tyrosine residue of human serum albumin at 0.02 m ionic strength involves prior rapid reversible binding characterized by a dissociation constant of 3.6 × 10?3m and an apparent pKa of 8.3. The rapid reaction of p-nitrophenyl acetate with human serum albumin (G. E. Means and M. L. Bender, 1975, Biochemistry14, 4989–4994) appears to involve the same tyrosine residue and is thus stoichiometrically inhibited by prior reaction with diisopropylfluorophosphate. Both reactions are strongly inhibited by decanoate anion, strongly retarded at higher ionic strength, and reflect strong rapidly reversible binding and abnormally low tyrosine pKa values. This reactive tyrosine residue thus appears to be located in a primary binding site for small apolar anions and to be closely associated with several cationic groups.  相似文献   

12.
Nosema pulvisPerez, 1905, Ameson pulvis (Perez) Sprague, 1977, in muscles of the crabs Carcinus maenas and C. mediterraneus from the coast of France, was observed with the electron microscope. It was found to be structurally similar to the type species A. michaelis (Sprague, 1970). Sprague, 1977, having moniliform sporogonial plasmodia, unikaryotic sporoblasts, and hirsute sporulation stages. It is treated as distinct from A. michaelis because it has slightly smaller spores (by comparison with syntype material of A. michaelis) and appears to have fewer coils in the polar filament. The results require the removal of the genus Ameson from the family Nosematidae Labbé, 1899, where Sprague (1977) had placed it under the erroneous supposition that its sporoblasts are diplokaryotic. Ameson is transferred to family Unikaryonidae Sprague, 1977. Ameson is distinguished from PereziaLéger and Duboscq, 1909, shown by Ormieres et al. to have a similar developmental pattern, by presence of appendages on its sporulation stage. A. nelsoni (Sprague, 1950), the third, and only other species of Ameson, lacks the appendages and is transferred to genus Perezia.  相似文献   

13.
14.
The model of Wilson and co-workers (2., 3., Arch. Biochem. Biophys. 182, 749–762) for the regulation of mitochondrial oxidative phosphorylation has been extended to include the dependence on oxygen tension. The derived rate expression correctly describes the observed dependence of cellular energy metabolism on oxygen tension, including the oxygen dependence at “normoxic” physiological values. Experimental evidence is presented that oxidative phosphorylation by suspensions of isolated rat liver mitochondria is also dependent on oxygen concentration up to values of at least 100 μM.  相似文献   

15.
During recent years, numerous attempts have been made to correlate both quantitative (Davies &; Taylor, 1959; Engen, 1962; Beck, 1964; Engen, Cain &; Rovee, 1968; Cain, 1969; Dravnieks &; Laffoit, 1970; Laffort, 1969a,b) and qualitative (Davies, 1965; Amoore &; Venstrom, 1965; Döving, 1966a,b; Wright &; Michels, 1964; Leveteau &; MacLeod, 1969) odorous properties of single compounds to their molecular properties. These attempts have been only partially successful.In the present paper we will try to explain the several odorous properties of single compounds on the basis of the non-specific properties of odorants involved in solubility.This model is a first approach, and although it gives statistically highly significant relations, it is not as accurate as those advanced with respect to the physical and sensory dimensions of stimuli in the fields of vision and audition.We will first give the present definitions of the most suitable physicochemical parameters, and then advance quantitative and qualitative models for single compounds. Quantitative odorous properties are: odour threshold, rate of change of odour intensity with odorant concentration in the suprathreshold region, and the somewhat controversial upper odour intensity. Qualitative properties refer to odour character.  相似文献   

16.
Synthesis of histone H4 by mouse oocytes and unfertilized eggs has been examined by using a modified high-resolution two-dimensional gel electrophoresis procedure capable of resolving basic proteins (M. J. LaMarca and P. M. Wassarman, 1979, Develop. Biol.73, 103–119). Histones were separated on such gels and observed rates of incorporation of [35S]methionine into histone H4 were converted into absolute rates of synthesis by using previously determined values for the absolute rates of total protein synthesis in mouse oocytes and unfertilized eggs Schultz et al., 1979a, Schultz et al., 1979b. Histone H4 was synthesized at all stages of oogenesis examined, and accounted for 0.07, 0.05, and 0.04% of total protein synthesis in growing oocytes, fully grown oocytes, and unfertilized eggs, respectively. During oocyte maturation the absolute rate of histone H4 synthesis decreased by about 40%, as compared to a 23% decrease in the rate of total protein synthesis during the same period. These measurements indicate that enough histone is synthesized during oogenesis in the mouse to support two to three cell divisions. Examination of the intracellular location of newly synthesized proteins in fully grown oocytes revealed that histone H4 was highly concentrated in the nucleus (germinal vesicle), whereas total protein and tubulin were not. Nearly 50% of the histone H4 synthesized during a 5-hr period was located in the oocyte's germinal vesicle, as compared to 1.9 and 0.9% for total protein and tubulin, respectively. These results are compared with those obtained using oocytes and eggs from nonmammalian animal species.  相似文献   

17.
Plasmodium vaughaniNovy and MacNeal, 1904, Plasmodium tenueLaveran and Marullaz, 1914, and Plasmodium merulaeCorradetti and Scanga, 1972 are shown to differ. It is suggested that P. tenue and P. merulae should be considered as subspecies belonging to Plasmodium vaughani-complex.More investigations are needed for a sufficient knowledge of the complex, particularly because at least 36 species of birds harbor P. vaughani-like parasites and cover an immense geographical area in all the parts of the world.  相似文献   

18.
The pattern of incorporation of [3H]thymidine into the chick neural retina has been used to establish the time and order in which different classes of neuroepithelial cells withdraw from the cell cycle and initiate migration and differentiation.The posterior pole of the retina is the first to form during development. In this region most neuroepithelial cells complete mitotic activity between the third and sixth day of incubation. Presumptive ganglion cells initiate the withdrawal process, and they are soon followed by the neuroepithelial precursors of amacrine, horizontal, and receptor cells. Bipolar cell precursors are the last to begin and the last to complete cell cycle activity. It is worthy of note, however, that, in any given region of the retina, neuroepithelial cells of all types cease mitosis in close, overlapping succession.These results are in reasonable agreement with those previously published on the chick retina by Fujita and Horii (1963), and other investigators on the mouse (Mus), killifish (Fundulus), and toad (Xenopus). The present data are also consistent with those proposals of Angevine (1970), Jacobson, 1968a, Jacobson, 1968b, Jacobson, 1970, and others that relate the cessation of mitotic activity of neuroepithelial cells to the determination of neuronal size, axon length, and the specification of neuronal connections.  相似文献   

19.
In disagreement with reported observation by Suhara and her colleagues (K. Suhara, S. Takemori, M. Katagiri, K. Wada, H. Kobayashi, and H. Matsubara, 1975, Anal. Biochem.68, 632–636) we found that more than 90% of labile sulfur was liberated from adrenodoxin within 5 min at 22°C. This rate was faster than those of spinach and clostridial ferredoxins, a result also at variance with Suhara's observation. At low temperature, the reaction was clearly biphasic, and spinach ferredoxin showed a similar profile. In the absence of zinc acetate, activation energies of the decomposition reaction of iron-sulfur center of OH? were obtained as 39, 26, and 11 kcal/mol for adrenal, spinach, and clostridial ferredoxins, respectively. The adrenal reaction became faster as the dipole moment of the solvent increased. In the presence of 4 m urea and 1 m KCl, the rate was enhanced by approximately 26-fold, relative to the reaction without the addition of urea. In conclusion, the liberation reaction of adrenal labile sulfur with alkaline zinc reagent is fast at 22°C, indicating no need for modification of the original method (T. Kimura and K. Suzuki, 1967, J. Biol. Chem.242, 485–491; P. E. Brumly, R. W. Miller, and V. Massey, 1965, J. Biol. Chem.240, 2222–2228).  相似文献   

20.
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3′–5′)guanosine. The acridine orange-iodoCpG2 crystals are monoclinic, space group P21, with unit cell dimensions a = 14.36 A?, b = 19.64 A?, c = 20.67 A?, β = 102.5 °. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A?, b = 22.23 A?, c = 18.42 A?, β = 123.3 °. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least-squares.Acridine orange forms an intercalative structure with iodoCpG in much the same manner as ethidium, ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium (Jain et al., 1977, Jain et al., 1979), except that the acridine nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus and is similar to that observed with the 9-aminoacridine-iodoCpG asymmetric intercalative binding mode described in the previous papers (Sakore et al., 1977, Sakore et al., 1979). Basepairs above and below the drug are separated by about 6.8 Å and are twisted about 10 °; this reflects the mixed sugar puckering pattern observed in the sugar-phospate chains: C3′ endo (3′–5′) C2′ endo (i.e. each cytidine residue has a C3′ endo sugar comformation, while each guanosine residue has a C2′ endo sugar conformation), alterations in glycosidic torsional angles and other small but significant conformational changes in the sugar-phosphate backbone.Proflavine, on the other hand, demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino groups on proflavine with phosphate oxygen atoms on the dinucleotide. In contrast to the acridine orange structure, base-pairs above and below the intercalative proflavine molecule are twisted about 36 °. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed: C3′ endo (3′–5′) C3′ endo. Since proflavine is known to unwind DNA in much the same manner as ethidium and acridine orange (Waring, 1970), one cannot use the information from this model system to understand how proflavine binds to DNA (it is possible, for example, that hydrogen bonding observed between proflavine and iodoCpG alters the intercalative geometry in this model system).Instead, we propose a model for proflavine-DNA binding in which proflavine lies asymmetrically in the intercalation site (characterized by the C3′ endo (3′–5′) C2′ endo mixed sugar puckering pattern) and forms only one hydrogen bond to a neighboring phosphate oxygen atom. Our model for proflavine-DNA binding, therefore, is very similar to our acridine orange-DNA binding model. We will describe these models in detail in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号