首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the flavin utilization by dibenzothiophene monooxygenase (DszC), DszC of a desulfurizing bacterium Mycobacterium goodii X7B was purified from the recombinant Escherichia coli. It was shown to be able to utilize either FMNH2 or FADH2 when coupled with a flavin reductase that reduces either FMN or FAD. Sequence analysis indicated that DszC was similar to the C2 component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii, which can use both FADH2 and FMNH2 as substrates. Both flavins at high concentrations could inhibit the activity of DszC due to autocatalytic oxidation of reduced flavins. The results suggest that DszC should be reclassified as an FMNH2 and FADH2 both-utilizing monooxygenase component and the flavins should be controlled at properly reduced levels to obtain optimal biodesulfurization results.  相似文献   

2.
NAD(P)H: FMN oxidoreductase (flavin reductase) couples in vitro to bacterial luciferase. This reductase, which is also postulated to supply reduced flavin mononucleotide in vivo as a substrate for the bioluminescent reaction, has been partially purified and characterized from two species of luminous bacterial. From Photobacterium fischeri the enzyme has a M. W. determined by Sephadex gel filtration, of 43,000 and may have a subunit structure. The turnover number at 20 degrees C, based on a purity estimate of 20 percent, is 1.7 times 10-4 moles of NADH oxidized per min per mole of reductase. The reductase isolated from Beneckea harveyi has an apparent molecular weight of 23,000; its purity was too low to permit estimation of specific activity. Using a spectrophotometric assay at 340 nm with the P. fischeri reductase, both NADH (Km, 8 times 10-5 M) and NADPH (Km, 4 times 10-4 M) were enzymatically oxidized, the Vmax with NADH being approximately twice that of NADPH. Of the flavins tested in this assay, only FMN (Km, 7.3 times 10-5 M) and FAD (Km, 1.4 times 10-4 M) were effective, FMN having a Vmax three times that of FAD. In the coupled assay, i.e., measuring the bioluminescence intensity of the reaction with added luciferase, the optimum FMN concentration was nearly 100 times less than in the spectrophotometric assay. The studies reported suggest the existence of a functional reductase-luciferase complex.  相似文献   

3.
4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large component (HpaB) was demonstrated here to be a reduced FAD (FADH2)-utilizing monooxygenase. When an E. coli flavin reductase (Fre) having no apparent homology with HpaC was used to generate FADH2 in vitro, HpaB was able to use FADH2 and O2 for the oxidation of 4-hydroxyphenylacetate. HpaB also used chemically produced FADH2 for 4-hydroxyphenylacetate oxidation, further demonstrating that HpaB is an FADH2-utilizing monooxygenase. FADH2 generated by Fre was rapidly oxidized by O2 to form H2O2 in the absence of HpaB. When HpaB was included in the reaction mixture without 4-hydroxyphenylacetate, HpaB bound FADH2 and transitorily protected it from rapid autoxidation by O2. When 4-hydroxyphenylacetate was also present, HpaB effectively competed with O2 for FADH2 utilization, leading to 4-hydroxyphenylacetate oxidation. With sufficient amounts of HpaB in the reaction mixture, FADH2 produced by Fre was mainly used by HpaB for the oxidation of 4-hydroxyphenylacetate. At low HpaB concentrations, most FADH2 was autoxidized by O2, causing uncoupling. However, the coupling of the two enzymes' activities was increased by lowering FAD concentrations in the reaction mixture. A database search revealed that HpaB had sequence similarities to several proteins and gene products involved in biosynthesis and biodegradation in both bacteria and archaea. This is the first report of an FADH2-utilizing monooxygenase that uses FADH2 as a substrate rather than as a cofactor.  相似文献   

4.
Plasma membrane flavins and pterins are considered to mediate important physiological functions such as blue light photoperception and redox activity. Therefore, the presence of flavins and pterins in the plasma membrane of higher plants was studied together with NAD(P)H-dependent redox activities. Plasma membranes were isolated from the apical hooks of etiolated bean seedlings (Phaseolus vulgaris L. cv. Limburgse Vroege) by aqueous two-phase partitioning. Fluorescence spectroscopy revealed the presence of two chromophores. The first showed excitation maxima at 370 and 460 nm and an emission peak at 520 nm and was identified as a flavin. The second chromophore was probably a pterin molecule with excitation peaks at 290 and 350 nm and emission at 440 nm. Both pigments are considered intrinsic to the plasma membrane since they could not be removed by treatment with hypotonic media containing high salt and low detergent concentrations. The flavin concentration was estimated at about 500 pmol mg?1 protein. However difficulties were encountered in quantifying the pterin concentrations. Protease treatments indicated that the flavins were non-covalently bound to the proteins. Separation of the plasma membrane proteins after solubilisation by octylglucoside, on an ion exchange system (HPLC, Mono Q), resulted in a distinct protein fraction showing flavin and pterin fluorescence and NADH oxidoreductase activity. The flavin of this fraction was identified as flavin mononucleotide (FMN) by HPLC analysis. Other minor peaks of NADH:acceptor reductase activity were resolved on the column. The presence of distinct NAD(P)H oxidases at the plasma membrane was supported by nucleotide specificity and latency studies using intact vesicles. Our work demonstrates the presence of plasma membrane flavins as intrinsic chromophores, that may function in NAD(P)H-oxidoreductase activity and suggests the presence of plasma membrane bound pterins.  相似文献   

5.
B Lei  M Liu  S Huang    S C Tu 《Journal of bacteriology》1994,176(12):3552-3558
NAD(P)H-flavin oxidoreductases (flavin reductases) from luminous bacteria catalyze the reduction of flavin by NAD(P)H and are believed to provide the reduced form of flavin mononucleotide (FMN) for luciferase in the bioluminescence reaction. By using an oligonucleotide probe based on the partial N-terminal amino acid sequence of the Vibrio harveyi NADPH-FMN oxidoreductase (flavin reductase P), a recombinant plasmid, pFRP1, was obtained which contained the frp gene encoding this enzyme. The DNA sequence of the frp gene was determined; the deduced amino acid sequence for flavin reductase P consists of 240 amino acid residues with a molecular weight of 26,312. The frp gene was overexpressed, apparently through induction, in Escherichia coli JM109 cells harboring pFRP1. The cloned flavin reductase P was purified to homogeneity by following a new and simple procedure involving FMN-agarose chromatography as a key step. The same chromatography material was also highly effective in concentrating diluted flavin reductase P. The purified enzyme is a monomer and is unusual in having a tightly bound FMN cofactor. Distinct from the free FMN, the bound FMN cofactor showed a diminished A375 peak and a slightly increased 8-nm red-shifted A453 peak and was completely or nearly nonfluorescent. The Kms for FMN and NADPH and the turnover number of this flavin reductase were determined. In comparison with other flavin reductases and homologous proteins, this flavin reductase P shows a number of distinct features with respect to primary sequence, redox center, and/or kinetic mechanism.  相似文献   

6.
Barker CD  Reda T  Hirst J 《Biochemistry》2007,46(11):3454-3464
Complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria contains 45 different subunits and nine redox cofactors. NADH is oxidized by a noncovalently bound flavin mononucleotide (FMN), then seven iron-sulfur clusters transfer the two electrons to quinone, and four protons are pumped across the inner mitochondrial membrane. Here, we use protein film voltammetry to investigate the mechanisms of NADH oxidation and NAD+ reduction in the simplest catalytically active subcomplex of complex I, the flavoprotein (Fp) subcomplex. The Fp subcomplex was prepared using chromatography and contained the 51 and 24 kDa subunits, the FMN, one [4Fe-4S] cluster, and one [2Fe-2S] cluster. The reduction potential of the FMN in the enzyme's active site is lower than that of free FMN (thus, the oxidized state of the FMN is most strongly bound) and close to the reduction potential of NAD+. Consequently, the catalytic transformation is reversible. Electrocatalytic NADH oxidation by subcomplex Fp can be explained by a model comprising substrate mass transport, the Michaelis-Menten equation, and interfacial electron transfer kinetics. The difference between the "catalytic" potential and the FMN potential suggests that the flavin is reoxidized before NAD+ is released or that intramolecular electron transfer from the flavin to the [4Fe-4S] cluster influences the catalytic rate. NAD+ reduction displays a marked activity maximum, below which the catalytic rate decreases sharply as the driving force increases. Two possible models reproduce the observed catalytic waveshapes: one describing an effect from reducing the proximal [2Fe-2S] cluster and the other the enhanced catalytic ability of the semiflavin state.  相似文献   

7.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

8.
Lei B  Wang H  Yu Y  Tu SC 《Biochemistry》2005,44(1):261-267
Vibrio harveyi NADPH:FMN oxidoreductase P (FRP(Vh)) is a homodimeric enzyme having a bound FMN per enzyme monomer. The bound FMN functions as a cofactor of FRP(Vh) in transferring reducing equivalents from NADPH to a flavin substrate in the absence of V. harveyi luciferase but as a substrate for FRP(Vh) in the luciferase-coupled bioluminescent reaction. As part of an integral plan to elucidate the regulation of functional coupling between FRP(Vh) and luciferase, this study was carried out to characterize the equilibrium bindings, reductive potential, and the reversibility of the reduction of the bound FMN in the reductive half-reaction of FRP(Vh). Results indicate that, in addition to NADPH binding, NADP(+) also bound to FRP(Vh) in either the oxidized (K(d) 180 microM) or reduced (K(d) 230 microM) form. By titrations with NADP(+) and NADPH and by an isotope exchange experiment, the reduction of the bound FMN by NADPH was found to be readily reversible (K(eq) = 0.8). Hence, the reduction of FRP(Vh)-bound FMN is not the committed step in coupling the NADPH oxidation to bioluminescence. To our knowledge, such an aspect of flavin reductase catalysis has only been clearly established for FRP(Vh). Although the reductive potentials and some other properties of a R203A variant of FRP(Vh) and an NADH/NADPH-utilizing flavin reductase from Vibrio fischeri are quite similar to that of the wild-type FRP(Vh), the reversal of the reduction of bound FMN was not detected for either of these two enzymes.  相似文献   

9.
A strain of the obligate anaerobe, Eubacterium lentum, isolated from human feces, catalyzes the 21-dehydroxylation of 11-deoxycorticosterone to progesterone. A quantitative radiochromatographic assay was developed to measure 21-dehydroxylase activity in cell extracts. Maximum enzyme activity in cell extracts required both a reduced pyridine nucleotide and an oxidized flavin coenzyme. However, photochemically reduced flavin (FMNH2) could replace the requirement for NAD(P)H plus oxidized flavin. NAD(P)H : flavin (either FMN or FAD) oxidoreductase activity was detected spectrophotometrically in cell extracts assayed under anaerobic conditions. 21-Dehydroxylase was active from pH 5.4 to 8.5 with an apparent optimum between 6.4 and 6.8 using mixtures of NADH plus FMN as coenzymes. The substrate concentration at half-maximal reaction velocity was 8.0 microM and a specific acitivity of 5.8 nmol [3H]progesterone formed . h-1 . mg-1 protein was determined using [3th]deoxycorticosterone as substrate. Atabrine, rotenone, acriflavin, and 2,4-dinitrophenol (all at 1 mM) inhibited 21-dehydroxylase activity in cell extracts by 25, 24, 35 and 84%, respectively. These results suggest that 21-dehydrogenase may be coupled to a NAD(P)H : flavin oxidoreductase system in E. lentum.  相似文献   

10.
Dibenzothiophene (DBT) in fossil fuels can be efficiently biodesulfurized by a thermophilic bacterium Mycobacterium goodii X7B. Flavin reductase DszD, which catalyzes the reduction of oxidated flavin by NAD(P)H, is indispensable for the biodesulfurization process. In this work, a flavin reductase DszD in M. goodii X7B was purified to homogeneity, and then its encoding gene dszD was amplified and expressed in Escherichia coli. DszD is a homodimer with each subunit binding one FMN as cofactor. The Km values for FMN and NADH of the purified recombinant DszD were determined to be 6.6 ± 0.3 μM and 77.9 ± 5.4 μM, respectively. The optimal temperature for DszD activity was 55 °C. DszD can use FMN or FAD as substrate to generate FMNH2 or FADH2 as product. DszD was coexpressed with DBT monooxygenase DszC, the enzyme catalyzing the first step of the biodesulfurization process. It was indicated that the coexpressed DszD could effectively enhance the DszC catalyzed DBT desulfurization reaction.  相似文献   

11.
Steady state and rapid reaction kinetics of the flavoprotein anthranilate hydroxylase (EC 1.14.12.2) have been examined with the nonhydroxylated substrate analogue, salicylate. Since the reaction with salicylate does not involve events in which aromatic substrate is oxygenated, it provides a simpler model for studying the hysteresis exhibited by this enzyme. It is shown that the first turnover of the enzyme is slower than subsequent turnovers owing in part to slow initial binding reactions of salicylate with the enzyme. The reductive half-reaction of the first turnover is also slow since rapid reduction of the enzyme flavin requires bound aromatic substrate. The oxidative half-reaction involves reaction of the reduced enzyme-salicylate complex with oxygen to form a flavin C4a-hydroperoxide, which then decays to oxidized flavoenzyme and H2O2. Several lines of evidence indicate that salicylate remains bound to the enzyme at the end of the catalytic cycle so that in turnovers subsequent to the first, the slow steps involving salicylate binding are avoided.  相似文献   

12.
The bioluminescent bacterial enzyme system NAD(P)H:FMN-oxidoreductase-luciferase has been used as a test system for ecological monitoring. One of the modes to quench bioluminescence is the interaction of xenobiotics with the enzymes, which inhibit their activity. The use of endogenous flavin fluorescence for investigation of the interactions of non-fluorescent compounds with the bacterial luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri has been proposed. Fluorescence spectroscopy methods have been used to study characteristics of endogenous flavin fluorescence (fluorophore lifetime, the rotational correlation time). The fluorescence anisotropy behaviour of FMN has been analysed and compared to that of the enzyme-bound flavin. The fluorescence characteristics of endogenous flavin of luciferase and NAD(P)H:FMN-oxidoreductase have been shown to be applicable in studying enzymes' interactions with non-fluorescent compounds.  相似文献   

13.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

14.
The reduction of ferric leghemoglobin (Lb3+) from soybean (Glycine max (L.) Merr.) nodules by riboflavin, FMN and FAD in the presence of NAD(P)H was studied in vitro. The system NAD(P)H + flavin reduced Lb3+ to oxyferrous (Lb2+ · O2) or deoxyferrous (Lb2+) leghemoglobin in aerobic or anaerobic conditions, respectively. In the absence of O2 the reaction was faster and more effective (i.e. less NAD(P)H oxidized per mole Lb3+ reduced) than in the presence of O2; this phenomenon was probably because O2 competes with Lb3+ for reductant, thus generating activated O2 species. The flavin-mediated reduction of Lb3+ did not entail production of superoxide or peroxide, indicating that NAD(P)H-reduced flavins were able to reduce Lb3+ directly. The NAD(P)H + flavin system also reduced the complexes Lb3+ · nicotinate and Lb3+ · acetate to Lb2+ · O2, Lb2+ or Lb2+ · nicotinate, depending on the concentrations of ligands and of O2. In the presence of 200 M nitrite most Lb remained as Lb3+ in aerobic conditions but the nitrosyl complex (Lb2+ · NO) was generated in anaerobic conditions. The above-mentioned characteristics of the NAD(P)H + flavin system, coupled with its effectiveness in reducing Lb3+ at physiological levels of NAD(P)H and flavins in soybean nodules, indicate that this mechanism may be especially important for reducing Lb3+ in vivo.Abbreviations and Terminology FLbR ferric leghemoglobin reductase - Hb2+ /Hb3+ hemoglobin containing Fe2+ /Fe2+ - Lb2+ /Lb3+ leghemoglobin containing Fe2+ /Fe3+ - Lb3+ · nicotinate/acetate Lb in which nicotinate or acetate are complexed to Lb3+ - Lb2+ · O2/CO/NO/nicotinate Lb in which O2, CO, NO or nicotinate are complexed to Lb2+ - Rfl riboflavin - SOD superoxide dismutase (EC 1.15.1.1) Published as Paper No. 9237, Journal Series, Nebraska Agricultural Research DivisionWe thank M.B. Crusellas for his skillful drawings. M. Becana thanks the Spanish Ministry of Education and Science/Fulbright Commission for financial support.  相似文献   

15.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

16.
Flavin‐dependent halogenases require reduced flavin adenine dinucleotide (FADH2), O2, and halide salts to halogenate their substrates. We describe the crystal structures of the tryptophan 6‐halogenase Thal in complex with FAD or with both tryptophan and FAD. If tryptophan and FAD were soaked simultaneously, both ligands showed impaired binding and in some cases only the adenosine monophosphate or the adenosine moiety of FAD was resolved, suggesting that tryptophan binding increases the mobility mainly of the flavin mononucleotide moiety. This confirms a negative cooperativity between the binding of substrate and cofactor that was previously described for other tryptophan halogenases. Binding of substrate to tryptophan halogenases reduces the affinity for the oxidized cofactor FAD presumably to facilitate the regeneration of FADH2 by flavin reductases.  相似文献   

17.
Conversion of 2-methyl-3-hydroxypyridine-5-carboxylic acid (Cpd I) to α-(N-acetylaminomethylene)succinic acid (Cpd A) is catalyzed by an FAD protein, Cpd I oxygenase (Sparrow, et al., J. Biol. Chem. [1969] 244, 2590–2600) according to the equation: Cpd I + O2 + NADH + H+ → Cpd A + NAD+. When free FAD, FMN or riboflavin is added to reaction mixtures, oxidation of NADH remains dependent on presence of oxygenase and Cpd I, but is partially uncoupled from the oxygenation of Cpd I. Under these conditions, free reduced flavins appear in solution, as shown by their ability to reduce cytochrome c. These effects are not due to an increased rate of NADH oxidation. Such uncoupling may lead to appearance of artifactual species of activated oxygen or flavin that play no intermediate role in the oxygenase reaction.  相似文献   

18.
Free reduced flavins are involved in a variety of biological functions. They are generated from NAD(P)H by flavin reductase via co-factor flavin bound to the enzyme. Although recent findings on the structure and function of flavin reductase provide new information about co-factor FAD and substrate NAD, there have been no reports on the substrate flavin binding site. Here we report the structure of TTHA0420 from Thermus thermophilus HB8, which belongs to flavin reductase, and describe the dual binding mode of the substrate and co-factor flavins. We also report that TTHA0420 has not only the flavin reductase motif GDH but also a specific motif YGG in C terminus as well as Phe-41 and Arg-11, which are conserved in its subclass. From the structure, these motifs are important for the substrate flavin binding. On the contrary, the C terminus is stacked on the NADH binding site, apparently to block NADH binding to the active site. To identify the function of the C-terminal region, we designed and expressed a mutant TTHA0420 enzyme in which the C-terminal five residues were deleted (TTHA0420-ΔC5). Notably, the activity of TTHA0420-ΔC5 was about 10 times higher than that of the wild-type enzyme at 20-40 °C. Our findings suggest that the C-terminal region of TTHA0420 may regulate the alternative binding of NADH and substrate flavin to the enzyme.  相似文献   

19.
Jawanda N  Ahmed K  Tu SC 《Biochemistry》2008,47(1):368-377
Vibrio harveyi luciferase and flavin reductase FRP are, together, a two-component monooxygenase couple. The reduced flavin mononucleotide (FMNH2) generated by FRP must be supplied, through either free diffusion or direct transfer, to luciferase as a substrate. In contrast, single-component bifunctional monooxygenases each contains a bound flavin cofactor and does not require any flavin addition to facilitate catalysis. In this study, we generated and characterized a novel fusion enzyme, FRP-alphabeta, in which FRP was fused to the luciferase alpha subunit. Both FRP and luciferase within FRP-alphabeta were catalytically active. Kinetic properties characteristic of a direct transfer of FMNH2 cofactor from FRP to luciferase in a FRP:luciferase noncovalent complex were retained by FRP-alphabeta. At submicromolar levels, FRP-alphabeta was significantly more active than an equal molar mixture of FRP and luciferase in coupled bioluminescence without FMN addition. Importantly, FRP-alphabeta gave a higher total quantum output without than with exogenously added FMN. Moreover, effects of increasing concentrations of oxygen on light intensity were investigated using sub-micromolar enzymes, and results indicated that the bioluminescence produced by FRP-alphabeta without added flavin was derived from direct transfer of reduced flavin whereas bioluminescence from a mixture of FRP and luciferase with or without exogenously added flavin relied on free-diffusing reduced flavin. Therefore, the overall catalytic reaction of FRP-alphabeta without any FMN addition closely mimics that of a single-component bifunctional monooxygenase. This fusion enzyme approach could be useful to other two-component monooxygenases in enhancing the enzyme efficiencies under conditions hindering reduced flavin delivery. Other potential utilities of this approach are discussed.  相似文献   

20.
Pseudomonas sp. strains C4, C5, and C6 utilize carbaryl as the sole source of carbon and energy. Identification of 1-naphthol, salicylate, and gentisate in the spent media; whole-cell O2 uptake on 1-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate, and gentisate; and detection of key enzymes, viz, carbaryl hydrolase, 1-naphthol hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, and gentisate dioxygenase, in the cell extract suggest that carbaryl is metabolized via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. Here, we demonstrate 1-naphthol hydroxylase and 1,2-dihydroxynaphthalene dioxygenase activities in the cell extracts of carbaryl-grown cells. 1-Naphthol hydroxylase is present in the membrane-free cytosolic fraction, requires NAD(P)H and flavin adenine dinucleotide, and has optimum activity in the pH range 7.5 to 8.0. Carbaryl-degrading enzymes are inducible, and maximum induction was observed with carbaryl. Based on these results, the proposed metabolic pathway is carbaryl → 1-naphthol → 1,2-dihydroxynaphthalene → salicylaldehyde → salicylate → gentisate → maleylpyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号