首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Shortly after the injection of glucagon, epinephrine, norepinephrine, vasopressin, or angiotensin II into fasted rats, mitochondria isolated from their livers contained elevated concentrations of malate and oxidized citrate, alpha-ketoglutarate, and, in some cases, succinate more rapidly than mitochondria from fasted, control rats. The administration of tryptophan, lactate, or ethanol and refeeding of rats fasted 24 h result in similar elevations of mitochondrial malate concentration and oxidation of added substrates. Treatments that resulted in elevated mitochondrial malate resulted also in increased uptake of added citrate, alpha-ketoglutarate, pyruvate, and, in some cases, succinate. It is postulated that the well-documented effect of gluconeogenic hormones on mitochondrial oxidation of carboxylic substrates may be mediated by malate which not only yields oxalacetate to support the tricarboxylic acid cycle but also facilitates the transport of added substrates, and which is regenerated in the tricarboxylic acid cycle.  相似文献   

2.
A cDNA from Arabidopsis thaliana and four related cDNAs from Nicotiana tabacum that we have isolated encode hitherto unidentified members of the mitochondrial carrier family. These proteins have been overexpressed in bacteria and reconstituted into phospholipid vesicles. Their transport properties demonstrate that they are orthologs/isoforms of a novel mitochondrial carrier capable of transporting both dicarboxylates (such as malate, oxaloacetate, oxoglutarate, and maleate) and tricarboxylates (such as citrate, isocitrate, cis-aconitate, and trans-aconitate). The newly identified dicarboxylate-tricarboxylate carrier accepts only the single protonated form of citrate (H-citrate2-) and the unprotonated form of malate (malate2-) and catalyzes obligatory, electroneutral exchanges. Oxoglutarate, citrate, and malate are mutually competitive inhibitors, showing K(i) close to the respective K(m). The carrier is expressed in all plant tissues examined and is largely spread in the plant kingdom. Furthermore, nitrate supply to nitrogen-starved tobacco plants leads to an increase in its mRNA in roots and leaves. The dicarboxylate-tricarboxylate carrier may play a role in important plant metabolic functions requiring organic acid flux to or from the mitochondria, such as nitrogen assimilation, export of reducing equivalents from the mitochondria, and fatty acid elongation.  相似文献   

3.
Mitochondria isolated from immature (developing), mature (unripe), and ripe mango pulp actively oxidized the intermediates of the Krebs cycle. The oxidation of citrate, oxoglutarate, succinate and malate by both unripe and ripe fruit mitochondria was several fold greater than that by mitochondria from immature fruit. The levels of malic dehydrogenase and succinic dehydrogenase increased with the onset of ripening, whereas the level of citrate synthase increased several fold on maturation but decreased six-fold on ripening. Isocitrate dehydrogenase and malic enzyme were very high in the immature fruit but after a sudden decrease in the matured fruit showed a considerable rise thereafter. The ratio of the activities of isocitrate lyase to isocitrate dehydrogenase is considerably higher in the immature fruit and greatest in the unripe (mature) fruit. This, together with a higher concentration of glyoxylate at these stages, indicate the operation of the glyoxylate bypass. Oxidized and reduced forms of pyridine nucleotides were estimated.  相似文献   

4.
Isolated pea leaf mitochondria oxidatively decarboxylate added glycine. This decarboxylation could be linked to the respiratory chain (in which case it was coupled to three phosphorylations) or to mitochondrial malate dehydrogenase when oxalacetate was supplied. Decarboxylation rates measured as O2 uptake, or CO2 and NH3 release were adequate to account for whole leaf photorespiration. Oxalacetate-supported glycine decarboxylation, measured by linking malate efflux to added malic enzyme, yielded rates considerably less than the electron transport rates. Butylmalonate inhibited malate efflux but not oxalacetate entry; phthalonate inhibited oxalacetate entry but had little effect on malate or α-ketoglutarate oxidation. It is suggested that oxalacetate and malate transport are catalyzed by separate carrier systems of the mitochondrial membrane.  相似文献   

5.
Calcium uptake into filipin-treated bovine spermatozoa is completely inhibited by the uncoupler CCCP or by ruthenium red. Both Pi and mitochondrial substrates are required to obtain the maximal rate of calcium uptake into the sperm mitochondria. Bicarbonate and other anions such as lactate, acetate or beta-hydroxybutyrate do not support a high rate of calcium uptake. There are significant differences among various mitochondrial substrates in supporting calcium uptake. The best substrates are durohydroquinone, alpha-glycerophosphate and lactate. Pyruvate is a relatively poor substrate, and its rate can be greatly enhanced by malate or succinate but not by oxalacetate or lactate. This stimulation is blocked by the dicarboxylate translocase inhibitor, butylmalonate and can be mimiced by the non-metabolized substrate D-malate. The Ka for pyruvate was found to be 17 microM and 67 microM in the presence and absence of L-malate, respectively. The Ka for L-malate is 0.12 mM. It is suggested that in addition to the known pyruvate/lactate translocase there is a second translocase for pyruvate which is malate/succinate-dependent and does not transport lactate. In the presence of succinate, glutamate stimulates calcium uptake 3-fold, and this effect is not inhibited by rotenone. In the presence of glutamate plus malate or oxalacetate there is only an additive effect. It is suggested that glutamate stimulates succinate transport and/or oxidation in bovine sperm mitochondria. The alpha-hydroxybutyrate is almost as good as lactate in supporting calcium uptake. Since the alpha-keto product is not further metabolized in the citric acid cycle, it is suggested that lactate can supply the mitochondrial needs for NADH from its oxidation to pyruvate by the sperm lactate dehydrogenase x. Thus, when there is sufficient lactate in the sperm mitochondria, pyruvate need not be further metabolized in the citric acid cycle in order to supply more NADH.  相似文献   

6.
Substrate-depleted rat liver mitochondria will reaccumulate malate, succinate, oxoglutarate, beta-hydroxybutyrate and glutamate if provided with an energy source and Ca(2+) (or Ca(2+) and Mn(2+)). The energy requirement for ion uptake by fresh mitochondria causes a transient oxidation of their NADH and presumably this leads to an increased oxaloacetate concentration. A consequence is the promotion of formation of citrate, which tends to remain in the particles, provided the pH is above 7. Analyses made of systems blocked with fluorocitrate show that citrate accumulates when Ca(2+) is added with the following substrates; (a) pyruvate in the presence of ATP or malate, (b) palmitoyl-l(-)-carnitine in presence of malate and (c) oxoglutarate. Lowering the pH, even to 6.8, causes the citrate to emerge. This could be the basis of a cellular control mechanism. The generation of citrate in response to Ca(2+) can explain the stoichiometry of one proton ejected per Ca(2+) ion taken up. The new carboxyl group formed from acetyl-CoA when it condenses with oxaloacetate provides an internal anionic charge and a proton to emerge when Ca(2+) enters.  相似文献   

7.
Combinations of insulin secretagogue-derived metabolites were added to microgram amounts of mitochondria obtained from rat and mouse pancreatic islets and the INS-1 cell line, and the export of citric acid cycle intermediates was surveyed to study anaplerosis in insulin secretion. Cellular levels of metabolites were also measured. In mitochondria from all three tissues, malate production was the most responsive to various substrates. The export of citrate and isocitrate in the presence of pyruvate and most other substrates was small and their levels in intact cells did not change with any secretagogue, except in INS-1 cells where citrate increased slightly. Changes in alpha-ketoglutarate and glutamate export from mitochondria and levels in intact cells indicate that glutamate can be consumed as a fuel secretagogue, but it is not likely produced as a messenger in insulin secretion. The citrate level may not need to increase in order to provide increased malonyl-CoA for signaling insulin secretion. Unlike some cells, insulin cells probably obtain cytosolic NADPH equivalents by exporting them from mitochondria to the cytosol via a pyruvate malate shuttle or an isocitrate shuttle. Only fuels that can enhance anaplerosis via pyruvate or alpha-ketoglutarate can be insulin secretagogues.  相似文献   

8.
The metabolism of pyruvate and lactate by rat adipose tissue was studied. Pyruvate and lactate conversion to fatty acids is strongly concentration-dependent. Lactate can be used to an appreciable extent only by adipose tissue from fasted-refed rats. A number of compounds, including glucose, pyruvate, aspartate, propionate, and butyrate, stimulated lactate conversion to fatty acids. Based on studies of incorporation of lactate-2-(3)H and lactate-2-(14)C into fatty acids it was suggested that the transhydrogenation sequence of the "citrate-malate cycle"(1) was not providing all of the NADPH required for fatty acid synthesis from lactate. An alternative pathway for NADPH formation involving the conversion of isocitrate to alpha-ketoglutarate via cytosolic isocitrate dehydrogenase was proposed. Indirect support for this proposal was provided by the rapid labeling of glutamate from lactate-2-(14)C by adipose tissue incubated in vitro, as well as the demonstration that glutamate can be readily metabolized by adipose tissue via reactions localized largely in the cytosol. Furthermore, isolated adipose tissue mitochondria convert alpha-ketoglutarate to malate, or in the presence of added pyruvate, to citrate. Glutamate itself can not be metabolized by these mitochondria, a finding in keeping with the demonstration of negligible levels of NAD-glutamate dehydrogenase activity in adipose tissue mitochondria. Pyruvate stimulated alpha-ketoglutarate and malate conversion to citrate and reduced their oxidation to CO(2). It is proposed that under conditions of excess generation of NADH malate may act as a shuttle carrying reducing equivalents across the mitochondrial membrane. Malate at low concentrations increased pyruvate conversion $$Word$$ citrate and markedly decreased the formation of CO(2) by isolated adipose tissue mitochondria. Malate also stimulated citrate and isocitrate metabolism by these mitochondria, an effect that could be blocked by 2-n-butylmalonate. This potentially important role of malate in the regulation of carbon flow during lipogenesis is underlined by the observation that 2-n-butylmalonate inhibited fatty acid synthesis from pyruvate, but not from glucose and acetate, and decreased the stimulatory effect of pyruvate on acetate conversion to fatty acids.  相似文献   

9.
10.
Binding experiments indicate that mitochondrial aspartate aminotransferase can associate with the alpha-ketoglutarate dehydrogenase complex and that mitochondrial malate dehydrogenase can associate with this binary complex to form a ternary complex. Formation of this ternary complex enables low levels of the alpha-ketoglutarate dehydrogenase complex, in the presence of the aminotransferase, to reverse inhibition of malate oxidation by glutamate. Thus, glutamate can react with the aminotransferase in this complex without glutamate inhibiting production of oxalacetate by the malate dehydrogenase in the complex. The conversion of glutamate to alpha-ketoglutarate could also be facilitated because in the trienzyme complex, oxalacetate might be directly transferred from malate dehydrogenase to the aminotransferase. In addition, association of malate dehydrogenase with these other two enzymes enhances malate dehydrogenase activity due to a marked decrease in the Km of malate. The potential ability of the aminotransferase to transfer directly alpha-ketoglutarate to the alpha-ketoglutarate dehydrogenase complex in this multienzyme system plus the ability of succinyl-CoA, a product of this transfer, to inhibit citrate synthase could play a role in preventing alpha-ketoglutarate and citrate from accumulating in high levels. This would maintain the catalytic activity of the multienzyme system because alpha-ketoglutarate and citrate allosterically inhibit malate dehydrogenase and dissociate this enzyme from the multienzyme system. In addition, citrate also competitively inhibits fumarase. Consequently, when the levels of alpha-ketoglutarate and citrate are high and the multienzyme system is not required to convert glutamate to alpha-ketoglutarate, it is inactive. However, control by citrate would be expected to be absent in rapidly dividing tumors which characteristically have low mitochondrial levels of citrate.  相似文献   

11.
Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricar☐ylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or a means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate car☐ykinasein vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA car☐ylase, a carbon source via ATP:citrate lyase and NADPH via NADP: malate dehydrogenase or NADP: isocitrate dehydrogenase.  相似文献   

12.
The effect of cyanide and rotenone on malate (pH 6.8), malate plus glutamate (pH 7.8), citrate, α-ketoglutarate, and succinate oxidation by cauliflower (Brassica oleracea L.) bud, sweet potato (Ipomoea batatis L.) tuber, and spinach (Spinacia oleracea and Kalanchoë daigremontiana leaf mitochondria was investigated. Cyanide inhibited all substrates equally with the exception of malate plus glutamate; in this case, inhibition of O2 uptake was more severe due to an effect of cyanide on aspartate aminotransferase. Azide and antimycin A gave similar inhibitions with all substrates. Subsequent addition of NAD had no effect with any substrate. Providing that oxalacetate accumulation was prevented, rotenone inhibited all NAD-linked substrates equally and caused ADP:O ratios to decrease by one-third. Addition of succinate to mitochondria oxidizing malate stimulated oxygen uptake, but adding citrate and α-ketoglutarate did not. These results indicate that there is no direct link between malic enzyme and the rotenone- and cyanide-resistant respiratory pathways, and that there is no need to postulate separate compartmentation of malic enzyme and the other NAD-linked enzymes in the matrix.  相似文献   

13.
1. After hypotonic treatment spermatozoa have metabolic characteristics of mitochondria isolated from other cells. Ejaculated boar spermatozoa treated in this way can oxidise external NADH via both a lactate-pyruvate shuttle and a malate-aspartate cycle; this oxidation is coupled to the phosphorylation of ADP. 2. The dicarboxylate transport inhibitors butylmalonate, phenylsuccinate and bathophenanthroline sulphonate inhibit NADH oxidation dependent on added malate, glutamate and aspartate. alpha-Cyanocinnamate, a strong inhibitor of pyruvate transport, inhibits lactate-dependent NADH oxidation. 3. NADH oxidation dependent on malate, glutamate and aspartate is inhibited by uncoupling agents, but lactate-dependent NADH oxidation is stimulated. 4. Lactate-dependent NADH oxidation is inhibited by oxamate, an inhibitor of lactate dehydrogenase. Aminooxyacetate, an aminotransferase inhibitor, inhibits glutamate, malate and aspartate-dependent NADH oxidation. 5. Hypotonically-treated spermatozoa retain radioactivity after incubation with L-[U-14C]malate, [1,5-14C]citrate or [2-14C]malonate. Exchanges of retained radioactivity with various substrates indicate that dicarboxylate and tricarboxylate exchange carriers exist in the mitochondrial membrane.  相似文献   

14.
McIntosh CA  Oliver DJ 《Plant physiology》1992,100(4):2030-2034
The tricarboxylate transporter was solubilized from pea (Pisum sativum) mitochondria with Triton X-114, partially purified over a hydroxylapatite column, and reconstituted in phospholipid vesicles. The proteoliposomes exchanged external [14C]citrate for internal citrate or malate but not for preloaded d,l-isocitrate. Similarly, although external malate, succinate, and citrate competed with [14C]citrate in the exchange reaction, d,l-isocitrate and phosphoenolpyruvate did not. This tricarboxylate transporter differed from the equivalent activity from animal tissues in that it did not transport isocitrate and phosphoenolpyruvate. In addition, tricarboxylate transport in isolated plant mitochondria, as well as that measured with the partially purified and reconstituted transporter, was less active than the transporter isolated from animal tissues.  相似文献   

15.
1. The mechanism of L-cysteinesulfinate permeation into rat liver mitochondria has been investigated. 2. Mitochondria do not swell in ammonium or potassium salts of L-cysteinesulfinate in all the conditions tested, including the presence of valinomycin and/or carbonylcyanide p-trifluoromethoxyphenylhydrazone. 3. The activation of malate oxidation by L-cysteinesulfinate is abolished by aminooxyacetate, an inhibitor of the intramitochondrial aspartate aminotransferase, it is not inhibited by high concentrations of carbonylcyanide p-trifluoromethoxyphenylhydrazone (in contrast to the oxidation of malate plus glutamate) and it is decreased on lowering the pH of the medium. 4. All the aspartate formed during the oxidation of malate plus L-cysteinesulfinate is exported into the extramitochondrial space. 5. Homocysteinesulfinate, cysteate and homocysteate, which are all good substrates of the mitochondrial aspartate aminotransferase, are unable to activate the oxidation of malate. Homocysteinesulfinate and homocysteate have no inhibitory effect on the L-cysteinesulfinate-induced respiration, whereas cysteate inhibits it competitively with respect to L-cysteinesulfinate. 6. In contrast to D-aspartate, D-cysteinesulfinate and D-glutamate, L-aspartate inhibits the oxidation of malate plus L-cysteinesulfinate in a competitive way with respect to L-cysteinesulfinate. Vice versa, L-cysteinesulfinate inhibits the influx of L-aspartate. 7. Externally added L-cysteinesulfinate elicits efflux of intramitochondrial L-aspartate or L-glutamate. The cysteinesulfinate analogues homocysteinesulfinate, cysteate and homocysteate and the D-stereoisomers of cysteinesulfinate, aspartate and glutamate do not cause a significant release of internal glutamate or aspartate, indicating a high degree of specificity of the exchange reactions. External L-cysteinesulfinate does not cause efflux of intramitochondrial Pi, malate, malonate, citrate, oxoglutarate, pyruvate or ADP. The L-cysteinesulfinate-aspartate and L-cysteinesulfinate-glutamate exchanges are inhibited by glisoxepide and by known substrates of the glutamate-aspartate carrier. 8. The exchange between external L-cysteinesulfinate and intramitochondrial glutamate is accompanied by translocation of protons across the mitochondrial membrane in the same direction as glutamate. The L-cysteinesulfinate-aspartate exchange, on the other hand, is not accompanied by H+ translocation. 9. The ratios delta H+/delta glutamate, delta L-cysteinesulfinate/delta glutamate and delta L-cysteinesulfinate/delta aspartate are close to unity. 10. It is concluded that L-cysteinesulfinate is transported by the glutamate-aspartate carrier of rat liver mitochondria. The present data suggest that the dissociated form of L-cysteinesulfinate exchanges with H+-compensated glutamate or with negatively charged aspartate.  相似文献   

16.
The level of aspartate aminotransferase in liver mitochondria was found to be approximately 140 microM, or 2-3 orders of magnitude higher than its dissociation constant in complexes with the inner mitochondrial membrane and the high molecular weight enzymes (M(r) = 1.6 x 10(5) to 2.7 x 10(6)) carbamyl-phosphate synthase I, glutamate dehydrogenase, and the alpha-ketoglutarate dehydrogenase complex. The total concentration of aminotransferase-binding sites on these structures in liver mitochondria was more than sufficient to accommodate all of the aminotransferase. Therefore, in liver mitochondria, the aminotransferase could be associated with the inner mitochondrial membrane and/or these high molecular weight enzymes. The aminotransferase in these hetero-enzyme complexes could be supplied with oxalacetate because binding of aminotransferase to the high molecular weight enzymes can enhance binding of malate dehydrogenase, and binding of both malate dehydrogenase and the aminotransferase facilitated binding of fumarase. The level of malate dehydrogenase was found to be so high (140 microM) in liver mitochondria, compared with that of citrate synthase (25 microM) and the pyruvate dehydrogenase complex (0.3 microM), that there would also be a sufficient supply of oxalacetate to citrate synthase-pyruvate dehydrogenase.  相似文献   

17.
Metabolism of lactate as a carbon source by Pseudomonas citronellolis occurred via a nicotinamide adenine dinucleotide (NAD)-independent L-lactate dehydrogenase, which was present in cells grown on DL-lactate but was not present in cells grown on acetate, aspartate, citrate, glucose, glutamate, or malate. The cells also possessed a constitutive, NAD-independent malate dehydrogenase instead of the conventional NAD-dependent malate dehydrogenase instead of the conventional NAD-dependent enzyme in the tricarboxylic acid cycle. Both enzymes were particulate and used dichlorophenolindo-phenol or oxygen as an electron acceptor. In acetate-grown cells, the activity of pyruvate dehydrogenase and NAD phosphate-linked malate enzyme decreased, cells grown on glucose or lactate. This was consistent with the need to maintain a supply of oxalacetate for metabolism of acetate via the tricarboxylic acid cycle. Changes in enzyme activities suggest that gluconeogenesis from noncarbohydrate carbon sources occurs via the malate enzyme (when oxalacetate decarboxylase is inhibited) or a combination of the NAD-independent malate dehydrogenase and oxalacetate decarboxylase.  相似文献   

18.
1. Carbon dioxide-bicarbonate mixtures markedly inhibited oxidation and phosphorylation rates of mitochondria prepared from cauliflower. Inhibition occurred with succinate, malate, citrate, isocitrate and NADH as substrates. 2. Indophenol-reductase systems with malate, succinate, isocitrate and NADH as substrates were inhibited by 5% and 15% carbon dioxide. Cytochrome c oxidase was not inhibited by 15% carbon dioxide.  相似文献   

19.
M. O. Proudlove  A. L. Moore 《Planta》1984,160(5):407-414
Transport and oxidation-reduction of citrate, 2-oxoglutarate and oxaloacetate by mitochondria isolated from thermogenic (Arum maculatum, Sauromatum guttatum spadices), green leaf (Pisum sativum) or etiolated (Phaseolus aureus, Helianthus tuberosus) plant tissues was found to be inhibited by phthalonic acid. No inhibition was found for NADH oxidation, glutamate, succinate or glycine transport and oxidation and malate transport. The much greater sensitivity of citrate oxidation to phthalonate inhibition compared with that of 2-oxoglutarate indicated that different carriers were involved, neither of which appeared to be rate-limiting for oxidation. Fluxes of oxaloacetate, and their sensitivity to phthalonate, indicated that this keto acid may use either the same carrier as 2-oxoglutarate or an oxaloacetate-specific carrier.Abbreviation PTA phthalonic acid  相似文献   

20.
The dicarboxylate carrier (DIC) is an integral membrane protein that catalyses a dicarboxylate-phosphate exchange across the inner mitochondrial membrane. We generated a yeast mutant lacking the gene for the DIC. The deletion mutant failed to grow on acetate or ethanol as sole carbon source but was viable on glucose, galactose, pyruvate, lactate and glycerol. The growth on ethanol or acetate was largely restored by the addition of low concentrations of aspartate, glutamate, fumarate, citrate, oxoglutarate, oxaloacetate and glucose, but not of succinate, leucine and lysine. The expression of the DIC gene in wild-type yeast was repressed in media containing ethanol or acetate with or without glycerol. These results indicate that the primary function of DIC is to transport cytoplasmic dicarboxylates into the mitochondrial matrix rather than to direct carbon flux to gluconeogenesis by exporting malate from the mitochondria. The delta DIC mutant may serve as a convenient host for overexpression of DIC and for the demonstration of its correct targeting and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号