首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anosmin is an extracellular matrix protein, and genetic defects in anosmin result in human Kallmann syndrome. It functions in neural crest formation, cell adhesion, and neuronal migration. Anosmin consists of multiple domains, and it has been reported to bind heparan sulfate, FGF receptor, and UPA. In this study, we establish cell adhesion/spreading assays for anosmin and use them for antibody inhibition analyses to search for an integrin adhesion receptor. We find that α5β1, α4β1, and α9β1 integrins are needed for effective adhesive receptor function in cell adhesion and cell spreading on anosmin; adhesion is inhibited by both RGD and α4β1 CS1-based peptides. This identification of anosmin-integrin adhesion receptors should facilitate studies of anosmin function in cell and developmental biology.  相似文献   

2.
ATP synthase (FoF1) consists of F1 (ATP-driven motor) and Fo (H+-driven motor). F1 is a complex of 33 subunits, and is the rotating cam in 33. Thermophilic F1 (TF1) is exceptional in that it can be crystallized as a monomer and an 33 oligomer, and it is sufficiently stable to allow refolding and reassembly of hybrid complexes containing 1, 2, and 3 modified or . The nucleotide-dependent open–close conversion of conformation is an inherent property of an isolated and energy and signals are transferred through / interfaces. The catalytic and noncatalytic interfaces of both mitochondrial F1 (MF1) and TF1 were analyzed by an atom search within the limits of 0.40 nm across the interfaces. Seven (plus thermophilic loop in TF1) contact areas are located at both the catalytic and noncatalytic interfaces on the open form. The number of contact areas on closed increased to 11 and 9, respectively, in the catalytic and noncatalytic interfaces. The interfaces in the barrel domain are immobile. The torsional elastic strain applied through the mobile areas is concentrated in hinge residues and the P-loop in . The notion of elastic energy in FoF1 has been revised. X-ray crystallography of F1 is a static snap shot of one state and the elastic hypotheses are still inconsistent with the structure, dyamics, and kinetics of FoF1. The domain motion and elastic energy in FoF1 will be elucidated by time-resolved crystallography.  相似文献   

3.
Conjugates of αs1-,κ-caseins and αs1-,κ-casein complex were prepared with dimethylaminonaphthalenesulfonate and pyrenebutyrate. Their fluorescence lifetimes and the rotational relaxation times were measured by single photon counting technique and fluorescence depolarization technique, respectively. Both dimethylaminonaphthalenesulfonate and pyrenebutyrate conjugates had more than two lifetimes and the longer lifetime of pyrenebutyrate conjugates was near 140 nsec.

The rotational relaxation time of pyrenebutyrate αs1-,κ-casein complex was smaller than that of pyrenebutyrate κ-casein polymer, which suggested that the complex formation of αs1- and κ-casein polymers led to dissociation of the κ-casein polymer.

Changes of the rotational relaxation time as a function of weight ratio of αs1- and κ-casein polymers (αs1/κ) showed the specific variation and it was suggested that 4 moles of αs1-κ-casein complex were formed from one mole of κ-casein polymer.  相似文献   

4.
5.
Most neurons co-express two catalytic isoforms of Na,K-ATPase, the ubiquitous α1, and the more selectively expressed α3. Although neurological syndromes are associated with α3 mutations, the specific role of this isoform is not completely understood. Here, we used electrophysiological and Na+ imaging techniques to study the role of α3 in central nervous system neurons expressing both isoforms. Under basal conditions, selective inhibition of α3 using a low concentration of the cardiac glycoside, ouabain, resulted in a modest increase in intracellular Na+ concentration ([Na+]i) accompanied by membrane potential depolarization. When neurons were challenged with a large rapid increase in [Na+]i, similar to what could be expected following suprathreshold neuronal activity, selective inhibition of α3 almost completely abolished the capacity to restore [Na+]i in soma and dendrite. Recordings of Na,K-ATPase specific current supported the notion that when [Na+]i is elevated in the neuron, α3 is the predominant isoform responsible for rapid extrusion of Na+. Low concentrations of ouabain were also found to disrupt cortical network oscillations, providing further support for the importance of α3 function in the central nervous system. The α isoforms express a well conserved protein kinase A consensus site, which is structurally associated with an Na+ binding site. Following activation of protein kinase A, both the α3-dependent current and restoration of dendritic [Na+]i were significantly attenuated, indicating that α3 is a target for phosphorylation and may participate in short term regulation of neuronal function.  相似文献   

6.
An artificial gene encoding thymosin 1 was obtained by chemoenzymatic synthesis and cloned into Escherichia coli. An expressing recombinant plasmid containing the hybrid protein gene, which encodes amino acid sequences of thymosin 1 and the Saccharomyces cerevisiae intein Sce VMA, was constructed. The expression of the hybrid protein from the resulting hybrid gene in E. coli, the properties of the resulting hybrid protein, and the conditions for its nonenzymatic cleavage to thymosin 1 were studied.  相似文献   

7.
Soluble guanylate cyclase (sGC) encompasses α and β subunits. This study examined the expression of α1, α2, β1, and β2 subunits in the malignant and benign breast tumors using the Western blot analysis. Both benign and malignant tumors showed a significantly higher expression of the α1 subunit in comparison with normal tissues (p < 0.0001). In contrast, the expression of α2 and β2 sGC were significantly lower in these tumors than normal tissues (p < .0015 and p < .001, p < .007 and p < .0001, respectively). The expression level of α1 sGC was significantly correlated with ER + PR+ (p < .0001). A significant correlation was also detected for sGC-α1 and -α2 expression with c-erbB2-negative status (p < .01). However, the expression level of sGC was not associated with tumor stage, tumor grade, or other clinicopathological features. In conclusion, as the expression of α1 sGC is upregulated and α2 and β2 sGC are downregulated in malignant breast tumors. Variations in the expression of sGC isoenzymes may be suggested as an indicator to confirm the enzyme antitumor activity.  相似文献   

8.
Proteolytically cleavage of the collagen NC1 α1 to α3 (IV) domains leads to antiangiogenic proteins called Arresten, Canstatin, and Tumstatin, respectively. The research identified that the two overlapping peptides derived from Tumstatin are more effective than other fragments and amino acids L78, V82, and D84 are essential for their activity. In the present study, the efficacy of a nine amino acid peptide derived from Tumstatin (Tum), containing amino acids L78, V82, and D84 was compared to the corresponding sequence in Arresten (Ars) and Canstatin (Can) in vitro and in vivo. Moreover, CD spectroscopy, MD, and docking simulations were performed to evaluate the structure and the interaction of peptides to integrin αvβ3, respectively. Results demonstrated that peptides inhibit viability, migration, and tube formation in vitro, as well as the growth of tumor in vivo and Canstatin-derived peptide was more potent than others. CD measurement and DSSP calculation revealed that Can had more coil conformation. According to MD simulations, Can had more fluctuation, less intramolecular interactions, and less structural compactness compared to Tum and Ars. It can be assumed that amino acid variations lead to a more flexible and loose structure compared to the other peptides. The Canstatin-derived peptide interacts with the integrin αvβ3 extremely close to RGD binding site by the most negative binding energy and more interactions. In conclusion, we for the first time identified an active peptide derived from Canstatin and showed that the sequence affected structure and thereby interaction of peptide to its receptor.  相似文献   

9.
Zusammenfassung Mit simultanen Azokupplungsverfahren und 1-Naphthylglykosiden als Substraten werden Verteilung und Aktivität von -Glucuronidase, -Mannosidase und -Galactosidase bei Ratte, Maus und Meerschweinchen untersucht.Für die -Glucuronidase besteht das Inkubationsmedium aus 5–10 mg 1-Naphthyl-glucuronid (gelöst in 0.4 ml NN-Dimethylformamid) und 0.6 ml 2% Hexazonium-p-rosanilin in 9 ml 0.2 M Acetat-Puffer, pH 5; für die -Mannosidase und -Galactosidase aus der gleichen Menge 1-Naphthyl--mannosid bzw. --galactosid und p-Rosanilin in 9 ml 0.1 M CitratCitronensäure-Phosphatoder Acetat-Puffer, pH 5 bzw. 5.2. Die Spezifität der Nachweisreaktionen sichern qualitative und quantitative Hemmversuche mit verschiedenen 1–4-Lactonen und Galactose ab.Die -Glucuronidase kann bei der Ratte vor allem intralysosomal nachgewiesen werden, z.B. in Niere, Nebenhoden, Uterus, Samenblase, Darm und Respirationstrakt; Mäuseund Meerschweinchengewebe setzen 1-Naphthyl--glucuronid langsamer um. Für die -Mannosidase läßt sich in zahlreichen Organen auch histochemisch die lysosomale Lokalisation des Enzyms beweisen, wobei die Aktivität in Urogenitalsystem, Darm und Speicheldrüsen besonders hoch ist, und in der Mäuseniere geschlechtsspezifische Unterschiede vorkommen. Erstmalig wird die intralysosomale Lokalisation der -Galactosidase gezeigt, die ubiquitär in teilweise hoher Aktivität anzutreffen ist. 6-Br-2-Naphthyl--galactosid eignet sich in Verbindung mit Fast Blue B nicht zur intralysosomalen Lokalisation der -Galaotosidase.Fluorometrische Messungen aller 3 Glykosidasen mit dem entsprechenden 1-Naphthylglykosid ergeben nach Fixation in Formol oder Glutaraldehyd Hemmraten zwischen 90 und 98 %; anschließendes Waschen in Zuckerlösung verdoppelt oder verdreifacht die Restaktivität.
On the histochemical demonstration of -glucuronidase, -mannosidase and -galactosidase using 1-naphthyl glycosides
Summary By means of simultaneous azo coupling using 1-naphthyl glycosides as substrates the distribution and activity of -glucuronidase, -mannosidase and -galactosidase have been investigated in rats, mice and guinea-pigs.For -glucuronidase the incubation medium consists of 5–10 mg 1-naphthyl--glucuronide (dissolved in 0.4 ml NN-dimethyl formamide) and 0.6 ml 2% hexazonium-p-rosaniline in 9 ml 0.2 M acetate buffer, pH 5; for -mannosidase and -galactosidase of the same quantities of 1-naphthyl--mannoside and -galactoside respectively and p-rosaniline in 9 ml 0.1 M citrate, citric acid-phosphate or acetate buffer, pH 5. Qualitative and quantitative inhibition tests using various 1–4 lactones and galactose prove the reaction specifity of the methods presented here. -Glucuronidase can be detected especially in lysosomes of rat organs, e.g. kidney, epididymis, uterus, vesicular gland, intestine and respiratory tract; tissues from mice and guineapigs exhibit a slower splitting rate for 1-naphthyl glucuronide. As to -mannosidase its lysosomal localization becomes apparent in many organs also by means of histochemistry. The urogenital system, intestine and the salivary glands belong to the structures with the highest amount of -mannosidase, and in the mouse kidney sex differences occur. For the first time -galactosidase can be demonstrated unequivocally in the lysosomes of rat, mouse and guineapig tissues in which this enzyme displays a high overall activity. 6-Br-2-Naphthyl--galactoside and Fast Blue B for postcoupling are not able to detect the lysosomal localization of -galactosidase.Fluorometric measurements of these 3 glycosidases by means of the corresponding 1-naphthyl glycoside reveal inhibition rates between 90 and 98% following fixation in formol or glutaraldehyde. Washing in sugar solution raises enzyme activity two or three times.
  相似文献   

10.
The cytoplasmic poly (A) binding protein (PABP) interacts with 3′ poly (A) tract of eukaryotic mRNA and is important for both translation and stability of mRNA. Previously, we have shown that depletion of PABP by siRNA prevents protein synthesis and consequently leads to cell death through apoptosis. In the present investigation, we studied the mechanism of cell apoptosis. We show that in the absence of PABP, the glycolytic enzyme GAPDH translocated to the cell nucleus and activated the GAPDH mediated apoptotic pathway by enhancing acetylation and serine 46 phosphorylation of p53. As a result, p53 translocated to the mitochondria to initiate Bax mediated apoptosis.  相似文献   

11.
Integrin α9β1     
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin α9β1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demonstrated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce α9β1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in α9β1 signal transduction. Here we provide an over view of known integrin α9β1 signaling pathways and highlight its roles in diverse biological conditions.  相似文献   

12.
To determine changes in the distribution of cell adhesion molecules during diapedesis of monocytes in situ, we labeled aortic whole mounts from hypercholesterolemic rats with Texas red-phalloidin and antibodies to LFA-1, PECAM-1, or α-catenin, and analyzed them by laser scanning confocal microscopy. Monocytes transmigrated through circular openings (transmigration passages) formed by pseudopodia that penetrated between adjacent en-dothelial cells. Transmigrating monocytes remained spherical above the endothelium, while spreading beneath it. The transmigration passage was lined by F-actin and partially by α-catenin, suggesting cadherin-mediated heterotypic interactions. LFA-1 was present in clusters at the monocyte cell surface throughout diapedesis, but was concentrated at the margin of the transmigration passage. PECAM-1 was enriched in the endothelial contact regions where the monocytes transmigrated. PECAM-1 was barely detectable in monocytes before and after diapedesis, but appeared during diapedesis at the cell surface in the parts of the monocyte located above the endothelium. PECAM-1 was enriched near the endothelial cell-cell junctions, but was not detected in parts that spread beneath the endothelium. Our results suggest a major role for LFA-1 during diapedesis and reveal dynamic changes in the distribution of PECAM-1, the actin cytoskeleton, and α-catenin during monocyte diapedesis in situ.  相似文献   

13.
Mutations in PARKIN (PARK2), an ubiquitin ligase, cause early onset Parkinson disease. Parkin was shown to bind, ubiquitinate, and target depolarized mitochondria for destruction by autophagy. This process, mitophagy, is considered crucial for maintaining mitochondrial integrity and suppressing Parkinsonism. Here, we report that under moderate mitochondrial stress, parkin does not translocate to mitochondria to induce mitophagy; rather, it stimulates mitochondrial connectivity. Mitochondrial stress-induced fusion requires PINK1 (PARK6), mitofusins, and parkin ubiquitin ligase activity. Upon exposure to mitochondrial toxins, parkin binds α-synuclein (PARK1), and in conjunction with the ubiquitin-conjugating enzyme Ubc13, stimulates K63-linked ubiquitination. Importantly, α-synuclein inactivation phenocopies parkin overexpression and suppresses stress-induced mitochondria fission, whereas Ubc13 inactivation abrogates parkin-dependent mitochondrial fusion. The convergence of parkin, PINK1, and α-synuclein on mitochondrial dynamics uncovers a common function of these PARK genes in the mitochondrial stress response and provides a potential physiological basis for the prevalence of α-synuclein pathology in Parkinson disease.  相似文献   

14.
α-Conotoxins are peptide toxins found in the venom of marine cone snails and potent antagonists of various subtypes of nicotinic acetylcholine receptors (nAChRs). nAChRs are cholinergic receptors forming ligand-gated ion channels in the plasma membranes of certain neurons and the neuromuscular junction. Because nAChRs have an important role in regulating transmitter release, cell excitability, and neuronal integration, nAChR dysfunctions have been implicated in a variety of severe pathologies such as epilepsy, myasthenic syndromes, schizophrenia, Parkinson disease, and Alzheimer disease. To expand the knowledge concerning cone snail toxins, we examined the venom of Conus longurionis. We isolated an 18-amino acid peptide named α-conotoxin Lo1a, which is active on nAChRs. To the best of our knowledge, this is the first characterization of a conotoxin from this species. The peptide was characterized by electrophysiological screening against several types of cloned nAChRs expressed in Xenopus laevis oocytes. The three-dimensional solution structure of the α-conotoxin Lo1a was determined by NMR spectroscopy. Lo1a, a member of the α4/7 family, blocks the response to acetylcholine in oocytes expressing α7 nAChRs with an IC50 of 3.24 ± 0.7 μm. Furthermore, Lo1a shows a high selectivity for neuronal versus muscle subtype nAChRs. Because Lo1a has an unusual C terminus, we designed two mutants, Lo1a-ΔD and Lo1a-RRR, to investigate the influence of the C-terminal residue. Lo1a-ΔD has a C-terminal Asp deletion, whereas in Lo1a-RRR, a triple-Arg tail replaces the Asp. They blocked the neuronal nAChR α7 with a lower IC50 value, but remarkably, both adopted affinity for the muscle subtype α1β1δϵ.  相似文献   

15.
Summary A series of longer analogues of the C-peptide of RNAse A has been synthesized with the aim of assessing the helix induction potential in water of α-methyl, α-amino acids at the N-terminus of the chain. The circular dichroism data indicate that one isovaline residue is effective in increasing the helix content of the 13-residue peptide by about 7%.  相似文献   

16.
-Methylspermine and ,-dimethylspermine were synthesized in high overall yields starting from N-(benzyloxycarbonyl)-3-aminobutanol in order to study polyamine biochemistry in vitro and in vivo.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 2, 2005, pp. 200–205.Original Russian Text Copyright © 2005 by Grigorenko, Vepsalainen, Jarvinen, Keinanen, Alhonen, Janne, Khomutov.  相似文献   

17.
Fucosyltransferases (FTs) and various glycosidases that are involved in the biosynthesis or degradation of SSEA-1 (Lex) antigens and their precursors in the CNS are developmentally regulated. In forebrain and cerebellum with lactosamine (LacNAc) as acceptor the FT activity was maximal at P15–P22, but with the glycolipid substrate paragloboside (nLc4) the maximal activity in cerebellum was obtained at P10–P15. The FT activity, with these substrates, was insensitive to N-ethylmaleimide (NEM) and the glycolipid product had an α1,3 linkage (Fuc to GlcNAc) suggesting similarities of the investigated enzyme to the cloned human and rat FT IV. However, the observation of different patterns of FT activity in isoelectrofocused fractions (pH 3.5–10) with different types of acceptors, and the differential expression of Lex containing glycolipids and glycoproteins during development strongly suggest the presence of more than one type of FT during development. Data on developmental expression of the hydrolytic enzymes, α-L-fucosidase, β-D-galactosidase and α-D-galactosidase, which can potentially hydrolyse SSEA-1 or its precursors, support the notion that SSEA-1 expression is the result of a dynamic balance between the activity of transferases and hydrolases. © 1998 Rapid Science Ltd  相似文献   

18.
The pedigree of a family some of whose members are heterozygous for an electrophoretically slower 1-antitrypsin variant is reported. Linkage relations to other common genetic markers have not been found.  相似文献   

19.

Background

α1-antitrypsin (AAT) serves primarily as an inhibitor of the elastin degrading proteases, neutrophil elastase and proteinase 3. There is ample clinical evidence that inherited severe AAT deficiency predisposes to chronic obstructive pulmonary disease. Augmentation therapy for AAT deficiency has been available for many years, but to date no sufficient data exist to demonstrate its efficacy. There is increasing evidence that AAT is able to exert effects other than protease inhibition. We investigated whether Prolastin, a preparation of purified pooled human AAT used for augmentation therapy, exhibits anti-bacterial effects.

Methods

Human monocytes and neutrophils were isolated from buffy coats or whole peripheral blood by the Ficoll-Hypaque procedure. Cells were stimulated with lipopolysaccharide (LPS) or zymosan, either alone or in combination with Prolastin, native AAT or polymerised AAT for 18 h, and analysed to determine the release of TNFα, IL-1β and IL-8. At 2-week intervals, seven subjects were submitted to a nasal challenge with sterile saline, LPS (25 μg) and LPS-Prolastin combination. The concentration of IL-8 was analysed in nasal lavages performed before, and 2, 6 and 24 h after the challenge.

Results

In vitro, Prolastin showed a concentration-dependent (0.5 to 16 mg/ml) inhibition of endotoxin-stimulated TNFα and IL-1β release from monocytes and IL-8 release from neutrophils. At 8 and 16 mg/ml the inhibitory effects of Prolastin appeared to be maximal for neutrophil IL-8 release (5.3-fold, p < 0.001 compared to zymosan treated cells) and monocyte TNFα and IL-1β release (10.7- and 7.3-fold, p < 0.001, respectively, compared to LPS treated cells). Furthermore, Prolastin (2.5 mg per nostril) significantly inhibited nasal IL-8 release in response to pure LPS challenge.

Conclusion

Our data demonstrate for the first time that Prolastin inhibits bacterial endotoxin-induced pro-inflammatory responses in vitro and in vivo, and provide scientific bases to explore new Prolastin-based therapies for individuals with inherited AAT deficiency, but also for other clinical conditions.  相似文献   

20.
The synthesis of an active proteinase inhibitor, gp 66, by human breast epithelial cells is reported. This glycoprotein is identical to serum α1-antichymotrypsin, which inhibits proteinases that cleave at hydrophobic residues. Immunohistological studies show the in vivo expression on normal secretory and ductal epithelial cells and on primary and metastatic adenocarcinomas. Immunoaffinity-purified gp 66 from MCF-7 culture supernatants is an active inhibitor of chymotrypsin as determined in a fluorogenic enzyme assay and can form stable 88 kDa enzyme-inhibitor complexes. The synthesis of a functional inhibitor may represent the epithelial cell's attempt to stabilize its extracellular milieu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号