首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic inhibitors were used in vitro in an attempt to elucidate the biochemical pathways by which lactate is converted to fatty acids by bovine adipose tissue. Subcutaneous adipose tissue samples were obtained by biopsy techniques from steers fed a high-energy ration. Kynurenate (α-2-diamino-γ-oxabenzenebutanoic acid) (5–10 mm), an inhibitor of acetyl-CoA carboxylase, and cerulenin (2,3-epoxy-4-oxo-7,10-dodecadienamide) (20–100 μg/ml), an inhibitor of the fatty acid synthetase enzyme complex, inhibited fatty acid synthesis from both acetate and lactate. The hydrogen acceptor, N-methylphenazonium methosulfate (10 μm) inhibited acetate but not lactate incorporation into fatty acids. α-Cyanohydroxycinnamate (5 mm) and phenylpyruvate (10 mm), which inhibit pyruvate entry into the mitochondria and pyruvate carboxylase, respectively, decreased lipogenesis from both acetate and lactate. The effects of phenylpyruvate on lipogenesis from acetate were greater in the presence of glucose plus insulin. Agaric acid (2-hydroxy-1,2,3-nonadecanetricarboxylic acid) (0.2 and 1.0 mm), which inhibits citrate efflux from the mitochondria also decreased lipogenesis from both acetate and lactate. Fluoroacetate (2.5 mm), an inhibitor of aconitate hydratase, had no effect on lipogenesis from acetate; but, in the presence of glucose or pyruvate, decreased lactate incorporation into fatty acids. n-Butylmalonate (5 mm), which blocks malate transport across the mitochondrial membrane, decreased lipogenesis from lactate but not acetate. Malate transport during lipogenesis is not associated with an operative malate:asparate shuttle in bovine adipose tissue, as indicated by the lack of effect of either 0.2 or 1.0 mm aminooxyacetate, a transaminase inhibitor, on lipogenesis from acetate or lactate. The results suggest a functional ATP-citrate lyase:NADP-malate dehydrogenase pathway in bovine subcutaneous adipose tissue and that this pathway may be involved in lipogenesis from acetate as well as lactate.  相似文献   

2.
Objective: To evaluate the effect of a 4‐day carbohydrate overfeeding on whole body net de novo lipogenesis and on markers of de novo lipogenesis in subcutaneous adipose tissue of healthy lean humans. Research Methods and Procedures: Nine healthy lean volunteers (five men and four women) were studied after 4 days of either isocaloric feeding or carbohydrate overfeeding. On each occasion, they underwent a metabolic study during which their energy expenditure and net substrate oxidation rates (indirect calorimetry), and the fractional activity of the pentose‐phosphate pathway in subcutaneous adipose tissue (subcutaneous microdialysis with 1, 613C2, 6, 62H2 glucose) were assessed before and after administration of glucose. Adipose tissue biopsies were obtained at the end of the experiments to monitor mRNAs of key lipogenic enzymes. Results: Carbohydrate overfeeding increased basal and postglucose energy expenditure and net carbohydrate oxidation. Whole body net de novo lipogenesis after glucose loading was markedly increased at the expense of glycogen synthesis. Carbohydrate overfeeding also increased mRNA levels for the key lipogenic enzymes sterol regulatory element‐binding protein‐1c, acetyl‐CoA carboxylase, and fatty acid synthase. The fractional activity of adipose tissue pentose‐phosphate pathway was 17% to 22% and was not altered by carbohydrate overfeeding. Discussion: Carbohydrate overfeeding markedly increased net de novo lipogenesis at the expense of glycogen synthesis. An increase in mRNAs coding for key lipogenic enzymes suggests that de novo lipogenesis occurred, at least in part, in adipose tissue. The pentose‐phosphate pathway is active in adipose tissue of healthy humans, consistent with an active role of this tissue in de novo lipogenesis.  相似文献   

3.
Regulation of some lipogenic enzyme gene expression by clofibrate was studied in rat white and brown adipose tissue. In white adipose tissue the drug administration for 14 days to rats resulted in the increase in acetyl-CoA carboxylase, ATP-citrate lyase, and glucose 6-phosphate dehydrogenase mRNA levels. Opposing effect of clofibrate on the acetyl-CoA carboxylase, ATP-citrate lyase, and glucose 6-phosphate dehydrogenase mRNA levels was found in brown adipose tissue. These data indicate a tissue specificity of clofibrate action on lipogenic enzyme gene expression. The results presented in this paper provide further evidence that hypolipidaemia caused by the treatment with clofibrate cannot be related to the inhibition of fatty acid synthesis in white adipose tissue in rat.  相似文献   

4.
Serum α1-acid glycoprotein (AGP) is elevated during late gestation and at birth in the pig and rapidly declines postnatally. In contrast, the pig is born with minimal lipid stores in the adipose tissue, but rapidly accumulates lipid during the first week. The present study examined if AGP can affect adipose tissue metabolism in the neonatal pig. Isolated cell cultures or tissue explants were prepared from dorsal subcutaneous adipose tissue of preweaning piglets. Porcine AGP was used at concentrations of 0, 100, 1000 and 5000 ng/ml medium in 24 h incubations. AGP reduced the messenger RNA (mRNA) abundance of the lipogenic enzymes, malic enzyme (ME), fatty acid synthase and acetyl coA carboxylase by at least 40% (P<0.001). The activity of ME and citrate lyase were also reduced by AGP (P<0.05). Glucose oxidation was reduced by treatment with 5000 ng AGP/ml medium (P<0.05). The 14C-glucose incorporation into fatty acids was reduced by ~25% by AGP treatment for 24 h with 1000 ng AGP/ml medium (P<0.05). The decrease in glucose metabolism by AGP appears to function through an inhibition in insulin-mediated glucose oxidation and incorporation into fatty acids. This was supported by the analysis of the mRNA abundance for sterol regulatory element-binding protein (SREBP), carbohydrate regulatory element-binding protein (ChREBP) and insulin receptor substrate 1 (IRS1), which all demonstrated reductions of at least 23% in response to AGP treatment (P<0.05). These data demonstrate an overall suppression of lipogenesis due to AGP inhibition of lipogenic gene expression in vitro, which the metabolic data and SREBP, ChREBP and IRS1 gene expression analysis suggest is through an inhibition in insulin-mediated events. Second, these data suggest that AGP may contribute to limiting lipogenesis within adipose tissue during the perinatal period, as AGP levels are highest for any serum protein at birth.  相似文献   

5.
R J Martin  P Lamprey 《Life sciences》1974,14(6):1121-1131
Introduction of hyperphagia by injection of aurothioglucose resulted in rapid deposition of tissue lipid. The changes in tissue enzyme levels and in vivo rates of lipogenesis from U-14C glucose were measured at 2, 4, and 8-week intervals post-aurothioglucose injection. Rapid increases of both enzyme activity and in vivo lipogenesis were observed during the onset of obesity. The elevated levels of adipose tissue enzyme activities were restored to normal levels 8 weeks post-injection. However, some lipogenic enzymes in liver tissue remained elevated throughout the experimental period. Liver tissue enzymes normally associated with glucogenesis were slightly elevated during the onset of obesity.  相似文献   

6.
We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.  相似文献   

7.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

8.
Cultured adipocytes (3T3-L1) produce large amounts of 3C fragments; largely lactate, depending on medium glucose levels. Increased glycolysis has been observed also in vivo in different sites of rat white adipose tissue. We investigated whether fructose can substitute glucose as source of lactate, and, especially whether the glycerol released to the medium was of lipolytic or glycolytic origin. Fructose conversion to lactate and glycerol was lower than that of glucose. The fast exhaustion of medium glucose was unrelated to significant changes in lipid storage. Fructose inhibited to a higher degree than glucose the expression of lipogenic enzymes. When both hexoses were present, the effects of fructose on gene expression prevailed over those of glucose. Adipocytes expressed fructokinase, but not aldolase b. Substantive release of glycerol accompanied lactate when fructose was the substrate. The mass of cell triacylglycerol (and its lack of change) could not justify the comparatively higher amount of glycerol released. Consequently, most of this glycerol should be derived from the glycolytic pathway, since its lipolytic origin could not be (quantitatively) sustained. Proportionally (with respect to lactate plus glycerol), more glycerol was produced from fructose than from glucose, which suggests that part of fructose was catabolized by the alternate (hepatic) fructose pathway. Earlier described adipose glycerophophatase activity may help explain the glycolytic origin of most of the glycerol. However, no gene is known for this enzyme in mammals, which suggests that this function may be carried out by one of the known phosphatases in the tissue. Break up of glycerol-3P to yield glycerol, may be a limiting factor for the synthesis of triacylglycerols through control of glycerol-3P availability. A phosphatase pathway such as that described may have a potential regulatory function, and explain the production of glycerol by adipocytes in the absence of lipolytic stimulation.  相似文献   

9.
Common molecular changes in cancer cells are high carbon flux through the glycolytic pathway and overexpression of fatty acid synthase, a key lipogenic enzyme. Since glycerol 3-phosphate dehydrogenase creates a link between carbohydrates and the lipid metabolism, we have investigated the activity of glycerol 3-phosphate dehydrogenase and various lipogenic enzymes in human bladder cancer. The data presented in this paper indicate that glycerol 3-phosphate dehydrogenase activity in human bladder cancer is significantly higher compared to adjacent non-neoplastic tissue, serving as normal control bladder tissue. Increased glycerol 3-phosphate dehydrogenase activity is accompanied by increased enzyme activity, either directly (fatty acid synthase) or indirectly (through ATP-citrate lyase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and citrate synthase) involved in fatty acid synthesis. Coordinated upregulation of glycerol 3-phosphate dehydrogenase and lipogenic enzymes activities in human bladder cancer suggests that glycerol 3-phosphate dehydrogenase supplies glycerol 3-phosphate for lipid biosynthesis.  相似文献   

10.

Background

Leptin is an adipocyte-derived hormone that plays a critical role in energy homeostasis and lipid metabolism. Overnutrition-associated obesity is known to be accompanied by hyperleptinemia. However, the physiological actions of leptin in the metabolic responses to high-fat diet (HFD) intake remain to be completely elucidated. Here we characterized the metabolic features of mice fed high-fat diets and investigated the impact of leptin upon the lipogenic program which was found to be suppressed by HFD feeding through a proteomics approach.

Results

When maintained on two types of high-fat diets for up to 16 weeks, mice with a higher fat intake exhibited increased body fat accumulation at a greater pace, developing more severely impaired glucose tolerance. Notably, HFD feeding at 4 weeks elicited the onset of marked hyperleptinemia, prior to the occurrence of apparent insulin resistance and hyperinsulinemia. Proteomic analysis revealed dramatically decreased expression of lipogenic enzymes in the white adipose tissue (WAT) from HFD-fed mice, including ATP-citrate lyase (ACL) and fatty acid synthase (FAS). The expression of ACL and FAS in the liver was similarly suppressed in response to HFD feeding. By contrast, HFD-induced downregulation of hepatic ACL and FAS was significantly attenuated in leptin receptor-deficient db/db mice. Furthermore, in the liver and WAT of wild type animals, intraperitoneal leptin administration was able to directly suppress the expression of these two lipogenic enzymes, accompanied by reduced triglyceride levels both in the liver and serum.

Conclusions

These results suggest that leptin contributes to the metabolic responses in adaptation to overnutrition through suppressing the expression of lipogenic enzymes, and that the lipogenic pathway represents a key targeted peripheral component in exerting leptin''s liporegulatory actions.  相似文献   

11.
The biosynthesis and degradation of two lipogenic enzymes were studied during the differentiation of 3T3-L1 preadipocytes into adipocytes. The activity and mass of malic enzyme, rose by an order of magnitude during adipocyte development and the enzyme accounted for 0.3% of the cytosol protein in mature fat cells. Similarly, the activity and amount of ATP-citrate lyase increased approximately 7-fold during the adipose conversion. The relative rates of synthesis of the two enzymes were less than or equal to 0.02% in preadipocytes, but increased sharply as the cells began to differentiate. Maximal steady state rates of malic enzyme and ATP-citrate lyase synthesis in 3T3-L1 adipocytes were 13- and 8-fold higher, respectively, than the basal rates in preadipocytes. In contrast, the half-lives of malic enzyme (67 h) and ATP-citrate lyase (47 h) were not altered during adipocyte development. Thus, accelerated rates of enzyme synthesis account for the differentiation-dependent accumulation of the two lipogenic enzymes. Increased rates of malic enzyme, ATP-citrate lyase, and fatty acid synthetase biosynthesis are expressed in a highly coordinated manner during adipocyte differentiation and are associated with parallel elevations in the levels of translatable mRNAs for these enzymes.  相似文献   

12.
White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.  相似文献   

13.
Transport of mitochondrial acetyl units to the cytoplasm for fatty acid synthesis via the citrate cleavage pathway requires replenishment of mitochondrial oxaloacetate. Pyruvate carboxylase is though to fulfill this role although compelling evidence has been lacking. During lipogenic differentiation of 3T3-L1 preadipocytes, pyruvate carboxylase activity rises 18-fold in close coordination with fat accumulation and the activity of ATP-citrate lyase, an established lipogenic enzyme. The activities of enzymes less directly related to lipogenesis rise only 3–5-fold while other unrelated enzymes do not increase significantly. These results indicate that pyruvate carboxylase is in fact a lipogenic enzyme.  相似文献   

14.
Three groups of 3 sheep were penned individually and provided with pelleted dried grass. In addition two of the groups received either dextrin or glucose via duodenal cannulae. The rate of in vitro lipogenesis, from acetate of glucose, in subcutaneous adipose tissue was significantly increased in the carbohydrate-infused sheep. The increase in lipogenesis in response to glucose infusion was much greater than that to dextrin infusion. The changes in lipogenesis induced by dextrin or glucose infusion were reflected in the specific activities of the various lipogenic enzymes examined. These results are discussed in relation to the capacity of the sheep small intestine to hydrolyse alpha-linked glucose polymer.  相似文献   

15.
The effects of vanadate administration on the plasma lipids and hepatic lipogenic enzymes were investigated in Zucker (fa/fa) rat, a model for obesity and non insulin-dependent diabetes. These animals were administered sodium orthovanadate through drinking water for a period of four months. The plasma levels of insulin, triacylglycerols and total cholesterol were significantly (p<0.001) elevated in untreated obese control rats as compared to the lean animals. In the livers of obese rats, the number of insulin receptors decreased by 60% and the activities of lipogenic enzymes acetyl-CoA carboxylase and ATP-citrate lyase increased by 4.7- and 5.6-folds, respectively. The messenger RNA for ATP-citrate lyase as measured by Northern blot analysis showed a parallel increase in obese control rats. Treatment of these rats with vanadate caused 56–77% decreases in the plasma levels of insulin, triacylglycerols and total cholesterol. The insulin receptor numbers in vanadate-treated obese rats increased (119%) compared to levels in untreated obese animals. The elevated activities of acetyl-CoA carboxylase and ATP-citrate lyase observed in livers of obese rats were significantly reduced by vanadate. The messenger RNA for ATP-citrate lyase also decreased in vanadate-treated obese rats back to the lean control levels. This study demonstrates that vanadate exerts potent actions on lipid metabolism in diabetic animals in addition to the recognized effects on glucose homeostasis.  相似文献   

16.
The effect of Mn2+ on the pattern of emergence of enzymes in rat liver and adipose tissue was studied in weaned rats given a milk diet (high fat) or sucrose-casein diet (high carbohydrate) for three weeks. Addition of Mn2+ to the high fat diet was associated with induction of key glycolytic, lipogenic and pentose pathway enzymes in both liver and adipose tissue; parallel increases were found in the incorporation of [1-14C] glucose into lipid and CO2. Mn2+ induced a change in the profile of enzyme activity similar in pattern to that found in rats given a high sucrose diet or that produced by insulin treatment. Mn2+ appears partially to overcome the regulatory feed-back mechanisms of the high fat diet and to provide a signal for the coordinated increase of glucose catabolic and lipogenic processes.  相似文献   

17.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

18.
Administration of triamcinolone or dexamethasone to rats led to a prompt, marked and persistent rise in liver acetyl-CoA carboxylase activity. The activity of fatty acid synthetase increased to a lesser extent and after a more prolonged glucocorticoid treatment, whereas the changes in that of NADP-malate dehydrogenase and ATP-citrate lyase were not appreciable. The overall channeling of [1-14-C]acetyl-CoA to fatty acids was enhanced. The triamcinolone effect on acetyl-CoA carboxylase activity appeared to be dependent on the coincident hyperinsulinemia since it was not obtained in alloxan-diabetic rats, whereas the alanine-aminotransferase-inducing effect of this hormone was additive to that of insulin deficiency. In adipose tissue triamcinolone treatment caused a reduction in the activity of all lipogenesis enzymes and blunted their response to insulin administration. The antagonism of glucocorticoids toward insulin, selectively modulating the responses of the insulin-sensitive enzymes in liver and adipose tissue is discussed. The rise in hepatic lipogenic capacity, through the retention of the ability of insulin to induce acetyl-CoA carboxylase, may be physiologically important in restraining the ketogenesis from acetyl-CoA despite the increased fat utilization during glucocorticoid excess.  相似文献   

19.
The BHE strain of rat is characterized by early hyperinsulinemia and maturity onset hyperlipemia and hyperglycemia. Since we have previously shown that insulin is required for the coordinate regulation of a number of lipogenic enzymes in rat liver, a comparative study of the hepatic activities of the rate-limiting enzymes of lipid synthesis and the in vivo rates of fatty acid and cholesterol synthesis in the liver and the adipose tissue has been conducted in BHE and Wistar rats. In the liver, BHE rats had 25–28% higher acetyl-CoA carboxylase and fatty acid synthetase activities as measured in vitro but a 100% greater rate of fatty acid synthesis in vivo as compared to Wistar animals. These results strongly suggest that factors other than the amount of acetyl-CoA carboxylase, such as allosteric effectors, must be operating in vivo, thereby facilitating the carboxylase to function at its maximal capacity in BHE rats. Such a regulation of fatty acid biosynthesis by allosteric modifiers of acetyl-CoA carboxylase is already known, although the mechanism of this regulation is not fully understood. BHE rats also exhibited a twofold greater rate of fatty acid synthesis in the adipose tissue compared to the Wistar rats. Thus, increased lipogenic capacity and increased lipogenesis in BHE rats are consistent with early hyperinsulinemia in this strain. Furthermore, BHE rats had 71% more 3-hydroxy-3-methylglutaryl CoA reductase activity with a 97% greater rate of cholesterol synthesis as compared to Wistar rats. In contrast, cholesterol 7α-hydroxylase activity was only 20% greater in BHE rats compared to Wistar rats, suggesting that the BHE rat does not have the capacity to degrade cholesterol to bile acids at a rate commensurate with the increased rate of cholesterol synthesis. This difference in synthesis versus degradation might account for the hypercholesterolemia which occurs in BHE rats, but not in Wistar rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号