首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.  相似文献   

2.
The relationship between environmental variables (chiefly temperature and humidity) and the population dynamics of spider mites is reviewed. Both direct effects on the spider mites and indirect effects operating through effects on spider mite natural enemies (mainly phytoseiid mites) are discussed. Factors determining the environmental conditions actually experienced by spider mites (microenvironment) are presented.Microenvironmental information versus environmental information from nearby weather stations is evaluated for utility in predicting spider mite population dynamics. A comprehensive plant canopy/spider mite/phytoseiid model is used to simulate an irrigated maize/spider-mite/phytoseiid system in a semi-arid climate. Under nearly all tested combinations of weather and irrigation, substantial differences were seen between simulations that considered microenvironment and those that considered only environmental conditions above the plant canopy. Future research needs are discussed.  相似文献   

3.
Environmental variation can promote differentiation in life-history traits in species of anurans. Increased environmental stress usually results in larger age at sexual maturity, older mean age, longer longevity, slower growth, larger body size, and a shift in reproductive allocation from offspring quantity to quality, and a stronger trade-off between offspring size and number. However, previous studies have suggested that there are inconsistent geographical variations in life-history traits among anuran species in China. Hence, we here review the intraspecific patterns and differences in life-history traits(i.e., egg size, clutch size, testes size, sperm length, age at sexual maturity, longevity, body size and sexual size dimorphism) among different populations within species along geographical gradients for anurans in China in recent years. We also provide future directions for studying difference in sperm performance between longer and shorter sperm within a species through transplant experiments and the relationships between metabolic rate and brain size and life-history.  相似文献   

4.
Wolbachia can induce cytoplasmic incompatibility (CI) in the arrhenotokous two-spotted spider mite between uninfected females and infected males. Cytoplasmic incompatibility is expressed through a male-biased sex ratio and a low hatchability, and can be suppressed by removing Wolbachia from spider mites reared on a diet with antibiotics. Here we investigated whether heat-treatment can elimate Wolbachia from infected mites. Using a PCR assay with a Wolbachia-specific primer pair (ftsZ), and by standard crosses, we were able to show that 71 per cent of the mites had lost the Wolbachia infection after rearing the infected population at 32 ± 0.5 °C for four generations. The infection could be completely removed when mites were reared at 32 ± 0.5 °C for six generations. Curing through high temperatures could be one of the reasons why mixed infected/uninfected populations occur in the field. An additional consequence of rearing mites at 32 ± 0.5 °C was the shortened development time. The effect of environmental temperature on the abundance of Wolbachia and possible behavioural consequences for the spider mite are discussed.  相似文献   

5.
Gotoh T  Noda H  Ito S 《Heredity》2007,98(1):13-20
Intracellular symbiotic bacteria belonging to the Cytophaga-Flavobacterium-Bacteroides lineage have recently been described and are widely distributed in arthropod species. The newly discovered bacteria, named Cardinium sp, cause the expression of various reproductive alterations in their arthropod hosts, including cytoplasmic incompatibility (CI), induction of parthenogenesis and feminization of genetic males. We detected 16S ribosomal DNA sequences similar to those of Cardinium from seven populations of five spider mite species, suggesting a broad distribution of infection of Cardinium in spider mites. To clarify the effect of Cardinium on the reproductive traits of the infected spider mites, infected mites were crossed with uninfected mites for each population. In one of the populations, Eotetranychus suginamensis, CI was induced when infected males were crossed with uninfected females. The other six populations of four species showed no reproductive abnormalities in the F(1) generation, but the possibility of CI effects in the F(2) generation remains to be tested. One species of spider mite, Tetranychus pueraricola, harbored both Cardinium and Wolbachia, but these symbionts seemed to have no effect on the reproduction of the host, even when the host was infected independently with each symbiont.  相似文献   

6.
Host‐associated organisms (e.g., parasites, commensals, and mutualists) may rely on their hosts for only a portion of their life cycle. The life‐history traits and physiology of hosts are well‐known determinants of the biodiversity of their associated organisms. The environmental context may strongly influence this interaction, but the relative roles of host traits and the environment are poorly known for host‐associated communities. We studied the roles of host traits and environmental characteristics affecting ant‐associated mites in semi‐natural constructed grasslands in agricultural landscapes of the Midwest USA. Mites are frequently found in ant nests and also riding on ants in a commensal dispersal relationship known as phoresy. During nonphoretic stages of their development, ant‐associated mites rely on soil or nest resources, which may vary depending on host traits and the environmental context of the colony. We hypothesized that mite diversity is determined by availability of suitable host ant species, soil detrital resources and texture, and habitat disturbance. Results showed that that large‐bodied and widely distributed ant species within grasslands support the most diverse mite assemblages. Mite richness and abundance were predicted by overall ant richness and grassland area, but host traits and environmental predictors varied among ant hosts: mites associated with Aphaenogaster rudis depended on litter depth, while Myrmica americana associates were predicted by host frequency and grassland age. Multivariate ordinations of mite community composition constructed with host ant species as predictors demonstrated host specialization at both the ant species and genus levels, while ordinations with environmental variables showed that ant richness, soil texture, and grassland age also contributed to mite community structure. Our results demonstrate that large‐bodied, locally abundant, and cosmopolitan ant species are especially important regulators of phoretic mite diversity and that their role as hosts is also dependent on the context of the interaction, especially soil resources, texture, site age, and area.  相似文献   

7.
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and cause an array of effects on host reproduction, fitness and mating behavior. Although our understanding of the Wolbachia-associated effects on hosts is rapidly expanding, our knowledge of the host factors that mediate Wolbachia dynamics is rudimentary. Here, we explore the interactions between Wolbachia and its host, the two-spotted spider mite Tetranychus urticae Koch. Our results indicate that Wolbachia induces strong cytoplasmic incompatibility (CI), increases host fecundity, but has no effects on the longevity of females and the mating competitiveness of males in T. urticae. Most importantly, host mating pattern was found to affect Wolbachia density dynamics during host aging. Mating of an uninfected mite of either sex with an infected mite attenuates the Wolbachia density in the infected mite. According to the results of Wolbachia localization, this finding may be associated with the tropism of Wolbachia for the reproductive tissue in adult spider mites. Our findings describe a new interaction between Wolbachia and their hosts.  相似文献   

8.
The Spical strain of the predatory mite Neoseiulus californicus (McGregor) is used as a biological control agent, but little is known about its preferred prey and host plants in Japan. Here we studied the development, reproduction and prey consumption of the Spical strain when fed on eggs of five different spider mite species deposited on both their laboratory-rearing plant and cherry, on which all five spider mite species developed well. The developmental periods of immature N. californicus females and males were significantly affected by the prey species they fed on, but not by the plants. No difference was found between males and females. The developmental period was shorter on eggs of two Tetranychus species than on eggs of Panonychus ulmi. Immature females had a higher predation rate than immature males. Preoviposition period, oviposition period and the number of eggs laid per female were not significantly affected by either the plants or the type of prey eggs. The postoviposition period and total adult longevity were shorter on eggs of P. ulmi than of the other four prey species, but there was no effect of plant substrate. The postoviposition period of the Spical strain was much longer than that of other N. californicus strains or other predatory mite species: the postoviposition period of the Spical strain was more than three times longer than the oviposition period, accounting for more than 75% of the total adult longevity. This suggests that the females need multiple mating to reach full egg load, but this remains to be tested. Total consumption by N. californicus adults was lower for eggs of P. ulmi than for eggs of the other four species, apparently because of the shorter postoviposition period when fed on eggs of P. ulmi. The intrinsic rates of natural increase (r m) on the rearing plant did not differ among prey species, whereas those on cherry were significantly different: the value was higher on Tetranychus urticae eggs than on eggs of other species. Only when N. californicus fed on T. urticae eggs, the r m-values were significantly different between the rearing plant and cherry (higher on cherry). Thus, the Spical strain of N. californicus could feed on eggs of all five spider mite species, deposited on a variety of plants with similar r m-values, suggesting that it could be successfully used to control spider mites in orchards and various crop fields of Japan.  相似文献   

9.
Symbiotic root micro-organisms such as arbuscular mycorrhizal fungi commonly change morphological, physiological and biochemical traits of their host plants and may thus influence the interaction of aboveground plant parts with herbivores and their natural enemies. While quite a few studies tested the effects of mycorrhiza on life history traits, such as growth, development and reproduction, of aboveground herbivores, information on possible effects of mycorrhiza on host plant choice of herbivores via constitutive and/or induced plant volatiles is lacking. Here we assessed whether symbiosis of the mycorrhizal fungus Glomus mosseae with common bean plants Phaseolus vulgaris influences the response of the two-spotted spider mite Tetranychus urticae to volatiles of plants that were clean or infested with spider mites. Mycorrhiza-naïve and -experienced spider mites, reared on mycorrhizal or non-mycorrhizal bean plants for several days before the experiments, were subjected to Y-tube olfactometer choice tests. Experienced but not naïve spider mites distinguished between constitutive volatiles of clean non-mycorrhizal and mycorrhizal plants, preferring the latter. Neither naïve nor experienced spider mites distinguished between spider mite-induced volatiles of mycorrhizal and non-mycorrhizal plants. Learning the odor of clean mycorrhizal plants, resulting in a subsequent preference for these odors, is adaptive because mycorrhizal plants are more favorable host plants for fitness of the spider mites than are non-mycorrhizal plants.  相似文献   

10.
The aims of this study were to determine whether sexual size dimorphism in fleas and gamasid mites (i) conforms to Rensch’s rule (allometry of sexual size dimorphism) and (ii) covaries with sex ratio in infrapopulations (conspecific parasites harboured by an individual host), xenopopulations (conspecific parasites harboured by a population of a given host species in a locality) and suprapopulations (conspecific parasites harboured by an entire host community in a locality). Rensch’s rule in sexual size dimorphism was tested across 150 flea and 55 mite species, whereas covariation between sexual size dimorphism and sex ratio was studied using data on ectoparasites collected from small mammalian hosts in Slovakia and western Siberia. For fleas, we controlled for the confounding effect of phylogeny. The slope of the linear regression of female size on male size was significantly smaller than 1 in fleas, but did not differ from 1 in mites. The proportion of males in flea infrapopulations significantly increased with an increase in the female-to-male body size ratio. The same was true for obligatory haematophagous mites. No relationship between sex ratio and sexual size dimorphism was found for xenopopulations of either taxon or for mite suprapopulations. However, when controlling for the confounding effect of phylogeny, a significant negative correlation between sex ratio and sexual size dimorphism was revealed for flea suprapopulations. We conclude that (i) some macroecological patterns differ between ectoparasite taxa exploiting the same hosts (allometry in sexual size dimorphism), whereas other patterns are similar (sexual size dimorphism-sex ratio relationship in infrapopulations), and (ii) some patterns are scale-dependent and may demonstrate the opposite trends in parasite populations at different hierarchical levels.  相似文献   

11.
Plants under herbivore attack often respond defensively by mounting chemical and physical defences. However, some herbivores can manipulate plant defences to their own benefit by suppressing the expression of induced defences. These herbivore‐induced changes specific to the attacking herbivore can either facilitate or impede the colonization and establishment of a second herbivore. Although recent studies have focused on the effect of multiple herbivory on plant induced response and the third trophic level, few have examined the ecological relevance of multiple herbivores sharing the host. Here, we investigated whether herbivory by the white mealybug Planococcus minor (Maskell) (Hemiptera: Pseudococcidae) or the red spider mite Olygonychus ilicis (McGregor) (Acari: Tetranychidae), two herbivores that peak in coffee plantations during the dry season, may facilitate the colonization and establishment of the other species in coffee plants. Dual‐choice arena tests showed that white mealybugs preferred mite‐infested over uninfested coffee plants as hosts. Fifteen days after the release of 50 first‐instar P. minor nymphs, greater numbers of nymphs and adults were found on mite‐infested than uninfested plants, indicating superior performance on mite‐infested plants. On the other hand, female red spider mites did not show clear preference between uninfested and mealybug‐infested plants and deposited similar numbers of eggs on both treatments. In a no‐choice test, red spider mites performed poorly on mealybug‐infested plants with a smaller number of eggs, nymphs, females and males found in mealybug‐infested plants relative to uninfested plants. Thus, our results indicate that coffee plants are more likely to be infested by the red spider mite before white mealybug, rather than the inverse sequence (i.e. mealybug infestation followed by red spider mites). Our findings are discussed in the context of plant manipulation reported for pseudococcid mealybugs and spider mites.  相似文献   

12.
The two-spotted spider mite, Tetranychus urticae Koch, is an important pest of cotton in mid-southern USA and causes yield reduction and deprivation in fiber fitness. Cotton and pinto beans grown in the greenhouse were infested with spider mites at the three-leaf and trifoliate stages, respectively. Spider mite damage on cotton and bean canopies expressed as normalized difference vegetation index indicative of changes in plant health was measured for 27 consecutive days. Plant health decreased incrementally for cotton until day 21 when complete destruction occurred. Thereafter, regrowth reversed decline in plant health. On spider mite treated beans, plant vigor plateaued until day 11 when plant health declined incrementally. Results indicate that pinto beans were better suited as a host plant than cotton for rearing T. urticae in the laboratory.  相似文献   

13.
Roy M  Brodeur J  Cloutier C 《Oecologia》2003,135(2):322-326
Although temperature is the most important environmental factor regulating arthropod development and reproduction, its influence on sex allocation in haplodiploid arthropods remains largely unexplored. We investigated under laboratory conditions how maternal age and temperature mediate offspring sex ratio of the spider mite Tetranychus mcdanieli (Acari: Tetranychidae). Over nine temperature regimes, female-biased sex ratios were consistently observed, varying from 57 to 87% among progeny produced over lifetime. Spider mite sex ratio was affected by maternal age: more male progeny were produced at both the beginning and the end of the female lifespan, yielding a dome shaped curvilinear relationship. This pattern of variation with age probably results from constraints on using sperm at young ages and sperm depletion or viability at older ages. We found a significant curvilinear relationship between temperature and sex ratio. The proportion of female offspring was lowest at intermediate temperatures and highest at extreme temperatures. We suggest that increased female-biased sex ratio at extreme temperatures is an evolutionary response of spider mites to deteriorating habitats as, in the Tetranychidae, females have better capacities than males to disperse and survive under harsh conditions.  相似文献   

14.
Dispersal to new hosts is an important process for an invasive herbivore, such as the two-spotted spider mite. A recent study, using artificial selection experiments, has suggested that genetic variation and genetic trade-offs are present for propensity to disperse in this species. However, due to the experimental setup alternative explanations for the response to selection could not be ruled out. Using an altered setup, we investigated whether the propensity for ambulatory dispersal differs genetically between individuals and whether genetic correlations with life-history traits exist. Upward and downward selection on propensity to leave the colony was performed for seven generations in four replicate artificial selection experiments and the results were compared to control lines. No consistent responses to selection were found and no significant effect on life-history traits (oviposition rate, juvenile survival, development rate and number of adult offspring) or sex ratio was present across the replicates. The data suggest that our base population of spider mites harbours at best a low amount of additive genetic variation for this behaviour.  相似文献   

15.
Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world; however, the composition of the spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated feces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host‐species specificity. Moreover, the abundance of the bacterial community in spider mite feces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a “core microbiome”. Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and feces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies.  相似文献   

16.
Spider mites are serious pests on many economically important plant species, because they may reduce plant productivity and, at high mite densities, overexploit and even kill the host plants. We have conducted a series of greenhouse experiments to quantify the effects of two-spotted spider mites (Tetranychus urticae) on host plants (Phaseolusvulgaris). The average amount of chlorophyll per cm2 leaf area was used as a measure of plant condition. It was shown that chlorophyll concentration decreases with plant age and intensity of spider mite feeding. Damage caused by spider mites was assessed visually, using the Leaf Damage Index (LDI) defined by, and a mathematical relationship between the visual measurements and the amount of chlorophyll/cm2 was fitted to data. The relationship may serve as a short-cut to estimate overall plant injury, expressed as the relative loss of chlorophyll/cm2 leaf area caused by spider mites (D). D takes values between 0 (no injury) and 1 (all leaves dead). A highly significant positive relationship between the instantaneous spider mite density and D was found, even though D is expected to reflect the cumulated density of mites (mite-days). A model of plant growth incorporating information about plant age and D predicts that plant area has a maximum when plant age is about 60 days, and that plant area decreases exponentially with an increase in D. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
To investigate the relationship between foraging behavior and life-history traits of the predatory mite Neoseiulus womersleyi, the olfactory responses, dispersal ratios from a prey patch, predation rates, fecundity, and developmental times in eight local populations of N. womersleyi were investigated. Significant differences among local populations were found in all these traits except fecundity. None of the life-history traits correlated with foraging behavior. A significant positive correlation was found only between the olfactory response and the dispersal ratio. These results suggested that predatory mites with low olfactory responses would stay in a prey patch longer than predatory mites with high olfactory responses.  相似文献   

18.
The effect of host plant species including black cherry (Prunus serotina cv. Irani), cherry (Prunus avium cv. siahe Mashhad) and apple (Malus domestica cv. shafi Abadi) was studied on biological parameters of Amphitetranychus viennensis (Zacher) in the laboratory at 25 ± 1°C, 70 ± 10% RH and 16L: 8D photoperiod. Duration of each life stage, longevity, reproduction rate, the intrinsic rate of natural increase (r m ), net reproductive rate (R 0 ), mean generation time (T), doubling time (DT), and finite rate of increase (λ) of the hawthorn spider mite on the three host plants were calculated. Differences in fertility life table parameters of the spider mite among host plants were analyzed using pseudo-values, which were produced by jackknife re-sampling. The results indicated that black cherry might be the most suitable plant for hawthorn spider mite due to the shorter developmental period (10.6 days), longer adult longevity (25.5 days), higher reproduction (65.6 eggs), and intrinsic rate of natural increase (0.194 females/female/day). Cherry was the least suitable host plant. To determine the effect of host shifts, the mite was transferred from black cherry onto cherry and apple. In the first generation after shifting to apple, the developmental period, reproduction and life table parameters were negatively influenced. However, population growth parameters in the first generation on cherry were actually better than after three generations on this new host. This underscores the relevance of the mites’ recent breeding history for life table studies.  相似文献   

19.
The goal of this study was to evaluate spider mite control efficacy of two dry-adapted strains of Neoseiulus californicus. Performance of these strains were compared to a commercial strain of Phytoseiulus persimilis on whole cucumber, pepper and strawberry plants infested with Tetranychus urticae at 50 +/- 5% RH. Under these dry conditions predators' performance was very different on each host plant. On cucumber, spider mite suppression was not attained by any of the three predators, plants 'burnt out' within 4 weeks of spider mite infestation. On strawberry, all predators satisfactorily suppressed spider mites yet they differed in short term efficacy and persistence. Phytoseiulus persimilis suppressed the spider mites more rapidly than did the BOKU and SI N. californicus strains. Both N. californicus strains persisted longer than did P. persimilis. The BOKU strain was superior to SI in population density reached, efficacy in spider mite suppression and persistence. On pepper, in the first 2 weeks of the experiment the BOKU strain was similar to P. persimilis and more efficacious in spider mite suppression than strain SI. Four weeks into the experiment the efficacy of P. persimilis dropped dramatically and was inferior to the SI and BOKU strains. Overall, mean predator density was highest on plants harbouring the BOKU strain, lowest on plants with P. persimilis and intermediate on plants with the SI strain. Implications for biocontrol of spider mites using phytoseiid species under dry conditions are discussed.  相似文献   

20.
Summary Twospotted spider mites, Tetranychus urticae Koch are arrhenotokous. As a result of this genetic structure, primary and secondary sex ratios diverge from the 1:1 female:male ratio commonly found in diploid systems. Ratios vary, but 3:1 is the most common. The influence of life history parameters on spider mite sex ratio is unclear, although maternal genetic effects, resource quality and maternal age are known to play a role. An area that has not been studied is the relationship between male reproductive capabilities and spider mite sex ratio. A prior study on male reproduction in spider mites suggests that males have far too high a reproductive capacity to explain sex ratio patterns, but that study was not conducted under realistic mating conditions. Thus, this study was conducted to determine if there is a link between male reproduction and spider mite sex ratio. This was done by exposing males to various exposure regimes of females and recording the number of copulations, inseminations and daughters fathered by each male. Results include the following: i) males are most virile when one day old; ii) virgin males become nearly completely devoid of sperm (or other copulatory products) after about 15 matings and then take about four days to recover; and iii) the optimal number of matings per day (defined as that which produces the greatest number of daughters in the least number of inseminations) is four females per day. The principle conclusion is that although males have a high potential reproductive output, insemination quality is only high for the first four or five matings each day. Therefore, to ensure full inseminations of all daughters by sons, females are constrained to producing primary sex ratios of about 5:1 or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号