首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alteration of tissue inhibitors of matrix metalloproteinases (TIMP)/matrix metalloproteinases (MMP) associated with collagen upregulation has an important role in sustained atrial fibrillation (AF). The expression of miR-146b-5p, whose the targeted gene is TIMPs, is upregulated in atrial cardiomyocytes during AF. This study was to determine whether miR-146b-5p could regulate the gene expression of TIMP4 and the contribution of miRNA to atrial fibrosis in AF. Collagen synthesis was observed after miR-146b-5p transfection in human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs)-fibroblast co-culture cellular model in vitro. Furthermore, a myocardial infarction (MI) mouse model was used to confirm the protective effect of miR-146b-5p downregulation on atrial fibrosis. The expression level of miR-146b-5p was upregulated, while the expression level of TIMP4 was downregulated in the fibrotic atrium of canine with AF. miR-146b-5p transfection in hiPSC-aCMs-fibroblast co-culture cellular model increased collagen synthesis by regulating TIMP4/MMP9 mediated extracellular matrix proteins synthesis. The inhibition of miR-146b-5p expression reduced the phenotypes of cardiac fibrosis in the MI mouse model. Fibrotic marker MMP9, TGFB1 and COL1A1 were significantly downregulated, while TIMP4 was significantly upregulated (at both mRNA and protein levels) by miR-146b-5p inhibition in cardiomyocytes of MI heart. We concluded that collagen fibres were accumulated in extracellular space on miR-146b-5p overexpressed co-culture cellular model. Moreover, the cardiac fibrosis induced by MI was attenuated in antagomiR-146 treated mice by increasing the expression of TIMP4, which indicated that the inhibition of miR-146b-5p might become an effective therapeutic approach for preventing atrial fibrosis.  相似文献   

2.
Development of drug resistance is one of the major causes of colorectal cancer recurrence, yet mechanistic understanding and therapeutic options remain limited. Here, we show that expression of microRNA (miR)-520g is correlated with drug resistance of colon cancer cells. Ectopic expression of miR-520g conferred resistance to 5-fluorouracil (5-FU)- or oxaliplatin-induced apoptosis in vitro and reduced the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. Further studies indicated that miR-520g mediated drug resistance through down-regulation of p21 expression. Moreover, p53 suppressed miR-520g expression, and deletion of p53 up-regulated miR-520g expression. Inhibition of miR-520g in p53−/− cells increased their sensitivity to 5-FU treatment. Importantly, studies of patient samples indicated that expression of miR-520g correlated with chemoresistance in colorectal cancer. These findings indicate that the p53/miR-520g/p21 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of miR-520g or restoration of p21 expression may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, especially in those with mutant p53.  相似文献   

3.
BackgroundHepatocellular carcinoma (HCC) is a common tumor malignancy threatening a significant number of people worldwide. Although microRNAs (miRNAs) have been shown to play essential role in tumorigenesis, little is known about their role in T cells functions during HCC progression.MethodsThe abundances of miR-26b-5p were detected in HCC tissues or cells, T cells and H22 cells by quantitative real-time polymerase chain reaction (qRT-PCR). Regulation effect of miR-26b-5p on proviral integrations of moloney virus 2 (PIM2) was investigated by qRT-PCR, western blot (WB) and immunohistochemical analysis. The effect of miR-26b-5p and PIM-2 on cytokines secretion in CD4+ and CD8+ cells was evaluated by commercial enzyme linked immunosorbent assays (ELISA) kit. The interaction between miR-26b-5p and PIM-2 was probed by luciferase activity and RNA immunoprecipitation (RIP). H22 subcutaneous model was established to investigate the interaction of miR-26b-5p with HCC and immune competence.ResultsThe abundance of miR-26b-5p was decreased in HCC and associated with poor survival. Addition of miR-26b-5p contributed to secretion of tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6) and IL-2 in CD4+ and CD8+ cells. Interestingly, PIM-2 was negatively regulated by miR-26b-5p and PIM-2 knockdown reversed anti-miR-26b-5p-mediated immunosuppression. Moreover, inhibitory effect of miR-26b-5p on HCC tumorigenesis was dependent on immune competence.ConclusionsmiR-26b-5p enhanced T cells responses by targeting PIM-2 in HCC, uncovering a promising therapeutic opportunity of HCC through reactivating immune system.  相似文献   

4.
MicroRNAs (miRNAs) participate in the pathological process of liver ischemia/reperfusion (I/R) injury. MiR-449b-5p is the target miRNA of high mobility group box 1 (HMGB1). Its role and molecular mechanism in liver I/R injury remain unidentified. In this study, we found a protective effect of miR-449b-5p against hepatic I/R injury. HMGB1 expression significantly increased, whereas miR-449b-5p dramatically decreased in patients after liver transplant and in L02 cells exposed to hypoxia/reoxygenation (H/R). A dual-luciferase reporter assay confirmed the direct interaction between miR-449b-5p and the 3′ untranslated region of HMGB1 messenger RNA. We also found that overexpression of miR-449b-5p significantly promoted cell viability and inhibited cell apoptosis of L02 cells exposed to H/R. Moreover, miR-449b-5p repressed HMGB1 protein expression and nuclear factor-κB (NF-κB) pathway activation in these L02 cells. In an in vivo rat model of hepatic I/R injury, overexpression of miR-449b-5p significantly decreased alanine aminotransferase and aspartate aminotransferase and inhibited the HMGB1/NF-κB pathway. Our study thus suggests that miR-449b-5p alleviated hepatic I/R injury by targeting HMGB1 and deactivating the NF-κB pathway, which may provide a novel and promising therapeutic target for hepatic I/R injury.  相似文献   

5.
Long non-coding RNA ZFAS1 is down-regulated in sepsis. However, whether ZFAS1 participates in sepsis-induced cardiomyopathy (SIC) remains largely unknown. LPS injection to rats was used to establish an in vivo sepsis model, while LPS stimulation with H9C2 cell was used to mimic an in vitro sepsis-induced myocardial injury model. Western blots and quantitative RT-PCR were performed to evaluate protein and mRNA levels, respectively. ELISA was conducted to determine cytokine levels in supernatant. Flow cytometry was used to test apoptosis. Dual-luciferase assay was performed to validate binding between ZFAS1 and miR-34b-5p, miR-34b-5p and SIRT1. Our data revealed that ZFAS1 and SIRT1 were down-regulated, while miR-34b-5p was up-regulated in LPS-induced H9C2 cells. Inhibition of miR-34b-5p or overexpression of ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells. A mechanism study revealed that ZFAS1 sponged miR-34b-5p and thus elevated expression of SIRT1, which was prohibited by miR-34b-5p. ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells via the miR-34b-5p/SIRT1 axis, providing novel potential therapeutic targets for SIC.  相似文献   

6.
7.
Dysregulation of microRNAs frequently contributes to the occurrence and progression of human diseases, including hepatocellular carcinoma (HCC). In this study, the role of miR-450b-3p in HCC was investigated. Gene Expression Omnibus database and HCC specimens were used to evaluate the expression level of miR-450b-3p and the patient's prognosis. Cell functional analyses and tumor xenograft model were used to assess the role of miR-450b-3p in HCC. Bioinformatics was used to predict the downstream target gene of miR-450b-3p, which was verified by dual-luciferase reporter assay. MiR-450b-3p was found to be downregulated in HCC cell lines and tissues, compared with nontransformed immortal hepatic cells and adjacent normal liver tissues, respectively. Lower expression of miR-450b-3p was associated with poor overall survival and disease-free survival in patients with HCC. Ectopic expression of miR-450b-3p inhibited HCC cell viability, colony formation, and cell-cycle progression in vitro, and suppressed the growth of HCC xenograft tumors in vivo. Interestingly, a negative correlation between miR-450b-3p and phosphoglycerate kinase 1 (PGK1) protein was observed among HCC specimens. Additionally, miR-450b-3p inhibited PGK1 expression and phosphorylation of protein kinase B in HCC cell lines. Further experiments confirmed that PGK1 was a direct target of miR-450b-3p. Moreover, restoration of PGK1 abrogated the inhibitory effect of miR-450b-3p on HCC proliferation and cell division. In conclusion, miR-450b-3p is downregulated in human HCC and exerts tumor suppressive effects at least in part by inhibiting PGK1.  相似文献   

8.
目的:探讨Dppa2 基因5'' 端启动子区Oct4 结合位点突变对Dppa2基因启动子活性的影响。方法:PCR 扩增包括Oct4 结合 位点的Dppa2 基因5'' 端转录起始点上游-2439~+293 bp 的启动子序列,片段长度为2732 bp。将该片段连接到pGL3-Basic 载体, 构建野生型pGL3-2439表达载体。采用定点突变法,将-1959~-1957 位碱基的GCA突变成TAG,构建Oct4 结合位点突变型 pGL3-mo2439 表达载体。用上述两种表达载体、PGL3-basic 载体和Oct4 表达载体分别瞬时转染HEK 293 细胞。细胞培养48 h 后,利用双荧光素酶报告系统测定各组细胞表达的荧光素酶的相对活性。结果:经琼脂糖凝胶电泳及测序鉴定,证实野生型 (pGL3-2439)和突变型(pGL3-mo2439)载体构建成功。荧光素酶活性测定结果显示,转染Dapp2 基因启动子野生型pGL3-2439 表 达载体的细胞组荧光素酶的相对活性为16.307,突变型pGL3-mo2439 表达载体的细胞组荧光素酶的相对活性为10.634。Oct4 结 合位点突变后,Dppa2 基因启动子区转录活性较野生型降低了35 %。结论:Dppa2基因5''端启动子区-1959~-1957 位的Oct4 结 合位点突变可能导致Dppa2 基因启动子活性下降。  相似文献   

9.
10.
Human cytomegalovirus(HCMV) infection has been shown to contribute to vascular disease through the induction of angiogenesis. However, the role of microRNA in angiogenesis induced by HCMV infection remains unclear. The present study was thus designed to explore the potential effect of miR-1217 on angiogenesis and to disclose the underlying mechanism in endothelial cells. We found that HCMV infection of endothelial cells(ECs) enhanced expression of miR-217 and reduced SIRT1 and FOXO3A protein level in 24 hours post infection(hpi). Transfection of miR-217 inhibitor not only depressed cellular migration and tube formation induced by HCMV infection, but also enhanced SIRT1 and FOXO3A protein expression. Additionally, luciferase assay confirmed that miR-217 directly targeted FOXO3A mRNA 3`UTR. Furthermore, pretreatment with resveratrol depressed motility and tube formation of HCMV-infected ECs, which could be reversed by SIRT1 siRNA. Similarly, delivery of FOXO3A overexpression lentivirus suppressed proliferative rate, migration and tube formation of HCMV-infected ECs, which reversed by transfection of FOXO3A siRNA. In summary, HCMV infection of endothelial cells induces angiogenesis by both of miR-217/SIRT1 and miR-217/FOXO3A axis.  相似文献   

11.
12.
Drug resistance in colorectal cancer is a great challenge in clinic. Elucidating the deep mechanism underlying drug resistance will bring much benefit to diagnosis, therapy and prognosis in patients with colorectal cancer. In this study, miR-29b-3p was shown to be involved in resistance to 5-fluorouracil (5-FU)-induced necroptosis of colorectal cancer. Further, miR-29b-3p was shown to target a regulatory subunit of necroptosis TRAF5. Rescue of TRAF5 could reverse the effect of miR-29b-3p on 5-FU-induced necroptosis, which was consistent with the role of necrostatin-1 (a specific necroptosis inhibitor). Then it was demonstrated that miR-29b-3p was positively correlated with chemoresistance in colorectal cancer while TRAF5 negatively. In conclusion, it is deduced that miR-29b-3p/TRAF5 signaling axis plays critical role in drug resistance in chemotherapy for colorectal cancer patients by regulating necroptosis. The findings in this study provide us a new target for interfere therapy in colorectal cancer.Key words: Colorectal cancer, miR-29b-3p, TRAF5, necroptosis, 5-fluorouracil resistance  相似文献   

13.
14.
15.
16.
17.
Most people are aware of gestational diabetes mellitus (GDM), a dangerous pregnancy complication in which pregnant women who have never been diagnosed with diabetes develop chronic hyperglycaemia. Exosomal microRNA (miRNA) dysregulation has been shown to be a key player in the pathophysiology of GDM. In this study, we looked into how placental exosomes and their miRNAs may contribute to GDM. When compared to exosomes from healthy pregnant women, it was discovered that miR-135a-5p was elevated in placenta-derived exosomes that were isolated from the maternal peripheral plasma of GDM women. Additionally, we discovered that miR-135a-5p encouraged HTR-8/SVneo cell growth, invasion and migration. Further research revealed that miR-135a-5p activates HTR-8/SVneo cells' proliferation, invasion and migration by promoting PI3K/AKT pathway activity via Sirtuin 1 (SIRT1). The transfer of exosomal miR-135a-5p generated from the placenta could be viewed as a promising agent for targeting genes and pertinent pathways involved in GDM, according to our findings.  相似文献   

18.
Liver fibrosis is a progressive disease accompanied by the deposition of extracellular matrix (ECM). Numerous reports have demonstrated that alterations in the expression of microRNAs (miRNAs) are related to liver disease. However, the effect of individual miRNAs on liver fibrosis has not been studied. Hepatic stellate cells (HSCs), being responsible for producing ECM, exert an important influence on liver fibrosis. Then, microarray analysis of non-activated and activated HSCs induced by transforming growth factor β1 (TGF-β1) showed that miR-130b-5p expression was strongly up-regulated during HSC activation. Moreover, the progression of liver fibrosis had a close connection with the expression of miR-130b-5p in different liver fibrosis mouse models. Then, we identified that there were specific binding sites between miR-130b-5p and the 3′ UTR of Sirtuin 4 (SIRT4) via a luciferase reporter assay. Knockdown of miR-130b-5p increased SIRT4 expression and ameliorated liver fibrosis in mice transfected with antagomiR-130b-5p oligos. In general, our results suggested that miR-130b-5p promoted HSC activation by targeting SIRT4, which participates in the AMPK/TGF-β/Smad2/3 signalling pathway. Hence, regulating miR-130b-5p maybe serve as a crucial therapeutic treatment for hepatic fibrosis.  相似文献   

19.
20.
Ethanol-mediated inhibition of hepatic sirtuin 1 (SIRT1) plays a crucial role in the pathogenesis of alcoholic fatty liver disease. Here, we investigated the underlying mechanisms of this inhibition by identifying a new hepatic target of ethanol action, microRNA-217 (miR-217). The role of miR-217 in the regulation of the effects of ethanol was investigated in cultured mouse AML-12 hepatocytes and in the livers of chronically ethanol-fed mice. In AML-12 hepatocytes and in mouse livers, chronic ethanol exposure drastically and specifically induced miR-217 levels and caused excess fat accumulation. Further studies revealed that overexpression of miR-217 in AML-12 cells promoted ethanol-mediated impairments of SIRT1 and SIRT1-regulated genes encoding lipogenic or fatty acid oxidation enzymes. More importantly, miR-217 impairs functions of lipin-1, a vital lipid regulator, in hepatocytes. Taken together, our novel findings suggest that miR-217 is a specific target of ethanol action in the liver and may present as a potential therapeutic target for treating human alcoholic fatty liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号