共查询到20条相似文献,搜索用时 0 毫秒
1.
Vilásia Guimarães Martins Susana Juliano Kalil Jorge Alberto Vieira Costa 《World journal of microbiology & biotechnology》2009,25(5):843-851
The discovery that certain microorganisms, living within a marine environment, can actually degrade components of oil, has
made possible the utilization of biological methods for the treatment of oil spills. A biosurfactant accelerates the process
of degradation of pollutant composites. The objective of this work was to study the bioremediation in situ of a diesel oil
spill by utilizing a biosurfactant produced through fermentation and then compare it with chemical remediation. The quantification
and identification of hydrocarbons were carried out by the process of gas chromatography. The soil indigenous microorganisms
were monitored. The experiment with biosurfactant reached reductions of 99% of the aliphatic hydrocarbons, while that of the
chemical disperser experiment reached a maximum of 90% reduction in 180 days. In 15 days the biosurfactant removed 77% of
the aliphatic hydrocarbons, the diesel oil experiment 8.7% and the chemical disperser only 5%. The biosurfactant was 99% effective
for the removal of aromatic polycyclic hydrocarbons, up to 3 rings. 相似文献
2.
Laboratory and field experiments were carried out for bioremediation of soils contaminated by fuel oil and motor oil. Bioventing was combined with the application of selected bacteria and dissolved nutrients. In the field experiments, soil gas was evacuated by air pumps from the permeable boreholes. The process was followed by both soil and gas analysis. Biodegradation of oil contamination and the microbial activity was measured by the oil and cell concentration in the soil. In 2 months, the oil content decreased considerably, and the cell number increased by one order of magnitude or more. The evacuated gas was tested for CO2, O2 and volatilized hydrocarbon content. The CO2 level proves the presence of biodegradation: a permanent high value about ten times higher than normal, could be measured for 2 months, followed by a slow decrease in the third month. Volatilized hydrocarbon content was the highest in the first 2 d. After a continuous decrease, it dropped under the threshold of measurability for the third month. Selective biodegradation of hydrocarbon mixtures (oily wastes) was investigated as well: gas Chromatographic oil analysis showed the changes in the oil composition. The appropriate microflora was working in an ideal commensalism, and as a result, all of the hydrocarbon components were degraded nearly to the same extent. 相似文献
3.
Application of soil slurry respirometry to optimise and subsequently monitor ex situ bioremediation of hydrocarbon-contaminated soils 总被引:1,自引:0,他引:1
T.J. Aspray D.J.C. Carvalho J.C. Philp 《International biodeterioration & biodegradation》2007,60(4):279-284
A protocol to monitor respiration as O2 consumption in soil slurries using the Strathtox® respirometer was developed and tested on four soils from brownfield sites. Respiration rates (mg l−1 h−1) of soil slurries in the Strathtox® were compared with rates (μl min−1) of field moist soils analysed using the Columbus Oxymax® ER10 respirometer. One of the soils (99612B), historically contaminated with diesel, was further studied by monitoring the effect of inorganic NH4NO3 liquid nutrient on enhancing respiration rate. Soil microcosms were monitored continuously on the Oxymax® or sampled at 24, 48 and 72 h intervals, prepared as soil slurries, and analysed on the Strathtox®. On the full-scale remediation project (6000 m3) soil 99612B was treated as a biopile with spent mushroom compost (SMC) amendment and respiration rates monitored in samples over an 8-week period. In the laboratory microcosm experiment and full-scale bioremediation treatment described, correlation was found for respiration rates between the two respirometry systems. 相似文献
4.
The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil
by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which
contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids,
was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase
reactors. Triton X-100 and Quillaya Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day
of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it
exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil
microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting
the availability of the chlorobenzoic acid degrading indigenous bacteria, whereas Quillaya Saponin slightly enhanced the biological
degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the
mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly
the soil PCB depletion, whereas Quillaya Saponin did not influence the bioremediation process.
Received: 28 April 1998 / Received last revision: 15 July 1998 / Accepted: 29 July 1998 相似文献
5.
Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil 总被引:1,自引:0,他引:1
Militon C Boucher D Vachelard C Perchet G Barra V Troquet J Peyretaillade E Peyret P 《FEMS microbiology ecology》2010,74(3):669-681
The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h?1 molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium. 相似文献
6.
Molecular characterization based on 16s rDNA gene sequence analysis of bacterial colonies isolated from endosulfan contaminated
soil showed the presence of Ochrobacterum sp, Burkholderia sp, Pseudomonas alcaligenes, Pseudomonas sp and Arthrobacter sp which degraded 57–90% of α-endosulfan and 74–94% of β-endosulfan after 7days. Whole cells of Pseudomonas sp and Pseudomonas alcaligenes showed 94 and 89% uptake of α-isomer and 86 and 89% of β-endosulfan respectively in 120 min. In Pseudomonas sp, endosulfan sulfate was the major metabolite detected during the degradation of α-isomer, with minor amount of endosulfan
diol while in Pseudomonas alcaligenes endosulfan diol was the only product during α-endosulfan degradation. Whole cells of Pseudomonas sp also utilized 83% of endosulfan sulfate in 120 min. In situ applications of the defined consortium consisting of Pseudomonas alcaligenes and Pseudomonas sp (1:1) in plots contaminated with endosulfan showed that 80% of α-endosulfan and 65% of β-endosulfan was degraded after
12 weeks of incubation. Endosulfan sulfate formed during endosulfan degradation was subsequently degraded to unknown metabolites.
ERIC-PCR analysis indicated 80% survival of introduced population of Pseudomonas alcaligenes and Pseudomonas sp in treated plots. 相似文献
7.
Lorraine M. Muckian Russell J. Grant Nicholas J.W. Clipson Evelyn M. Doyle 《International biodeterioration & biodegradation》2009,63(1):52-56
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote. Bacterial community dynamics were examined in soils amended with two PAHs, phenanthrene or fluoranthene, and treated with fertiliser or aerated to stimulate the indigenous microbial population. Profiles of the bacterial communities present under a range of experimental conditions were generated using terminal restriction fragment length polymorphism (TRFLP) and the results were interpreted using sophisticated multivariate statistical analysis. Results indicated a distinct separation between community compositions based on time in phenanthrene-contaminated soil and a similar but less significant effect observed in fluoranthene-contaminated soil. High concentrations of fluoranthene had a positive effect on the abundance of some of the most dominant ribotypes. Aeration provided the most rapid treatment and resulted in almost complete removal of phenanthrene after 28 days. 相似文献
8.
Polymer beads have been used to absorb high concentrations of phenol from soil decreasing the initial concentration of 2.3 g kg−1 soil to 100 mg kg−1 soil and achieving a phenol loading within the polymer beads of 27.5 mg phenol g−1 beads. The phenol-loaded polymer beads were removed from the soil and placed in a bioreactor, which was then inoculated with a phenol-degrading microbial consortium. All of the phenol contained within the polymer beads was shown to desorb from the polymer matrix and was degraded by the microbial consortium. The beads were used again (twice) in a similar manner with no loss in performance. 相似文献
9.
Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil 总被引:11,自引:0,他引:11
A full-scale study evaluating an inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil was conducted at an oil refinery where the indigenous population of hydrocarbon-degrading bacteria in the soil was very low (10(3) to 10(4) CFU/g of soil). A feasibility study was conducted prior to the full-scale bioremediation study. In this feasibility study, out of six treatments, the application of a bacterial consortium and nutrients resulted in maximum biodegradation of total petroleum hydrocarbon (TPH) in 120 days. Therefore, this treatment was selected for the full-scale study. In the full-scale study, plots A and B were treated with a bacterial consortium and nutrients, which resulted in 92.0 and 89.7% removal of TPH, respectively, in 1 year, compared to 14.0% removal of TPH in the control plot C. In plot A, the alkane fraction of TPH was reduced by 94.2%, the aromatic fraction of TPH was reduced by 91.9%, and NSO (nitrogen-, sulfur-, and oxygen-containing compound) and asphaltene fractions of TPH were reduced by 85.2% in 1 year. Similarly, in plot B the degradation of alkane, aromatic, and NSO plus asphaltene fractions of TPH was 95.1, 94.8, and 63.5%, respectively, in 345 days. However, in plot C, removal of alkane (17.3%), aromatic (12.9%), and NSO plus asphaltene (5.8%) fractions was much less. The population of introduced Acinetobacter baumannii strains in plots A and B was stable even after 1 year. Physical and chemical properties of the soil at the bioremediation site improved significantly in 1 year. 相似文献
10.
Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil 总被引:3,自引:0,他引:3
Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87%, respectively), and the biodegradation values were higher when nutrients were not added, especially for benzo(a)anthracene and chrysene. The moisture content and aeration were determined to be the key factors associated with PAH bioremediation. Neither biosurfactant addition, bioaugmentation, nor ferric octate addition led to differences in PAH or TPH biodegradation compared to biodegradation with nutrient treatment. All treatments resulted in a high first-order degradation rate during the first 45 days, which was markedly reduced after 90 days. A sharp increase in the size of the heterotrophic and PAH-degrading microbial populations was observed, which coincided with the highest rates of TPH and PAH biodegradation. At the end of the incubation period, PAH degraders were more prevalent in samples to which nutrients had not been added. Denaturing gradient gel electrophoresis analysis and principal-component analysis confirmed that there was a remarkable shift in the composition of the bacterial community due to both the biodegradation process and the addition of nutrients. At early stages of biodegradation, the alpha-Proteobacteria group (genera Sphingomonas and Azospirillum) was the dominant group in all treatments. At later stages, the gamma-Proteobacteria group (genus Xanthomonas), the alpha-Proteobacteria group (genus Sphingomonas), and the Cytophaga-Flexibacter-Bacteroides group (Bacteroidetes) were the dominant groups in the nonnutrient treatment, while the gamma-Proteobacteria group (genus Xathomonas), the beta-Proteobacteria group (genera Alcaligenes and Achromobacter), and the alpha-Proteobacteria group (genus Sphingomonas) were the dominant groups in the nutrient treatment. This study shows that specific bacterial phylotypes are associated both with different phases of PAH degradation and with nutrient addition in a preadapted PAH-contaminated soil. Our findings also suggest that there are complex interactions between bacterial species and medium conditions that influence the biodegradation capacity of the microbial communities involved in bioremediation processes. 相似文献
11.
David R. Singleton Maiysha D. Jones Stephen D. Richardson Michael D. Aitken 《Applied microbiology and biotechnology》2013,97(18):8381-8391
Barcoded amplicon pyrosequencing was used to generate libraries of partial 16S rRNA genes from two columns designed to simulate in situ bioremediation of polycyclic aromatic hydrocarbons (PAHs) in weathered, contaminated soil. Both columns received a continuous flow of artificial groundwater but one of the columns additionally tested the impact of biostimulation with oxygen and inorganic nutrients on indigenous soil bacterial communities. The penetration of oxygen to previously anoxic regions of the columns resulted in the most significant community changes. PAH-degrading bacteria previously determined by stable-isotope probing (SIP) of the untreated soil generally responded negatively to the treatment conditions, with only members of the Acidovorax and a group of uncharacterized PAH-degrading Gammaproteobacteria maintaining a significant presence in the columns. Additional groups of sequences associated with the Betaproteobacterial family Rhodocyclaceae (including those associated with PAH degradation in other soils), and the Thiobacillus, Thermomonas, and Bradyrhizobium genera were also present in high abundance in the biostimulated column. Similar community responses were previously observed during biostimulated ex situ treatment of the same soil in aerobic, slurry-phase bioreactors. While the low relative abundance of many SIP-determined groups in the column libraries may be a reflection of the slow removal of PAHs in that system, the similar response of known PAH degraders in a higher-rate bioreactor system suggests that alternative PAH-degrading bacteria, unidentified by SIP of the untreated soil, may also be enriched in engineered systems. 相似文献
12.
In situ microcosms in aquifer bioremediation studies 总被引:1,自引:0,他引:1
13.
Crude biosurfactant from thermophilic Alcaligenes faecalis: Feasibility in petro-spill bioremediation 总被引:1,自引:0,他引:1
P. Bharali S. DasB.K. Konwar A.J. Thakur 《International biodeterioration & biodegradation》2011,65(5):682-690
The thermophilic bacterium Alcaligenes faecalis isolated from the crude oil contaminated soil of Upper Assam, India. The isolated bacterium was first screened for the ability to produce biosurfactant. The strain growing at 42 °C could produce higher amount of biosurfactant in medium supplemented with 2% (v/v) diesel as sole source of carbon and energy. Biochemical characterizations including FT-IR and MS studies suggested the biosurfactant to be glycolipid. Tensiometric studies revealed that the biosurfactant produced by the bacterial strain could decrease the surface tension (??) at air-water interface from 71.6 to 32.3 mNm−1 after 96 h of growth on hydrocarbon and possessed a low critical micelle concentration (CMC) value of approximately 38 mgl−1, indicating high surface activity. The culture supernatant containing the biosurfactant was found to be functionally stable at varying pH (2-12), temperature (100 and 121 °C) and salinity (1-6% NaCl, w/v) conditions. Both the culture broth and the cell free supernatant exhibited high emulsifying activity against the different hydrocarbons and the crude oil components. The increase in cell surface hydrophobicity and glycolipid production by the strain suggested the existence of biosurfactant enhanced interfacial uptake of the hydrocarbons. Moreover, the partially purified biosurfactant exhibited antimicrobial activity by inhibiting the growth of several bacterial and fungal species. The strain represented a new class of biosurfactant producers and could be a potential candidate for the production of glycolipid biosurfactant which could be useful in a variety of biotechnological and industrial processes, particularly in the oil industry. 相似文献
14.
15.
16.
Anand S. Nayak M.H. Vijaykumar T.B. Karegoudar 《International biodeterioration & biodegradation》2009,63(1):73-79
Biosurfactant producing bacterium was identified as Pseudoxanthomonas sp. PNK-04 based on morphological, physiological, biochemical tests and 16S rRNA gene sequencing. This strain was screened for biosurfactant production using different carbon sources by measuring the surface tension of the medium at different time intervals, and hemolytic activity. The produced biosurfactant was found to be a rhamnolipid based on the formation of dark blue haloes around the colonies in CTAB–methylene blue agar plates and the content of rhamnose sugar. The rhamnolipids produced by this bacterium were found to contain mono- and dirhamnose units linked to β-hydroxy alkonic acids containing 8–12 carbon atoms. This biosurfactant has high emulsifying activity when compared to chemical surfactants such as Tween-80 and Triton X-100 with respect to aliphatic and aromatic hydrocarbons. Further, the biosurfactant stimulates the degradation of 2-chlorobenzoic acid, 3-chlorobenzoic acid and 1-methyl naphthalene by Pseudoxanthomonas sp. PNK-04 probably by aiding in the uptake and increasing the solubility. 相似文献
17.
Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments. 相似文献
18.
Plant and Soil - Rehabilitation of biological soil crusts (biocrusts) in degraded drylands may facilitate ecosystem recovery. In order to rehabilitate biocrusts, ex situ culture methods for... 相似文献
19.
Toxicity and bioremediation of pesticides in agricultural soil 总被引:5,自引:0,他引:5
Greeshma Odukkathil Namasivayam Vasudevan 《Reviews in Environmental Science and Biotechnology》2013,12(4):421-444
Pesticides are one of the persistent organic pollutants which are of concern due to their occurrence in various ecosystems. In nature, the pesticide residues are subjected to physical, chemical and biochemical degradation process, but because of its high stability and water solubility, the pesticide residues persist in the environment. Moreover, the prevailing environmental conditions like the soil characteristics also contribute for their persistence. Bioremediation is one of the options for the removal of pesticides from environment. One important uncertainty associated with the implementation of bioremediation is the low bioavailability of some of the pesticides in the heterogeneous subsurface environment. Bioavailability of a compound depends on numerous factors within the cells of microorganism like the transportation of susbstrate across cell membrane, enzymatic reactions, biosurfactant production etc. as well as environment conditions such as pH, temperature, availability of electron acceptor etc. Pesticides like dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), Endosulfan, benzene hexa chloride (BHC), Atrazine etc. are such ubiquitous compounds which persist in soil and sediments due to less bioavailability. The half life of such less bioavailable pesticides ranges from 100 to 200 days. Most of these residues get adsorbed to soil particles and thereby becomes unavailable to microbes. In this review, an attempt has been made to present a brief idea on ‘major limitations in pesticide biodegradation in soil’ highlighting a few studies. 相似文献
20.
Phillips TM Lee H Trevors JT Seech AG 《Journal of industrial microbiology & biotechnology》2004,31(5):216-222
Soil containing hexachlorocyclohexane (HCH) was spiked with 14C--HCH and then subjected to bioremediation in bench-scale microcosms to determine the rate and extent of mineralization of the 14C-labeled HCH to 14CO2. The soil was treated using two different DARAMEND amendments, D6386 and D6390. The amendments were previously found to enhance natural HCH bioremediation as determined by measuring the disappearance of parent compounds under either strictly oxic conditions (D6386), or cycled anoxic/oxic conditions (D6390). Within 80 days of the initiation of treatment, mineralization was observed in all of the strictly oxic microcosms. However, mineralization was negligible in the cycled anoxic/oxic microcosms throughout the 275-day study, even after cycling was ceased at 84 days and although significant removal (up to 51%) of indigenous -HCH (146 mg/kg) was detected by GC with electron capture detector. Of the amended, strictly oxic treatments, only one, in which 47% of the spiked 14C-HCH was recovered as 14CO2, enhanced mineralization compared with an unamended treatment (in which 34% recovery was measured). Other oxic treatments involving higher amendment application rates or auxiliary carbon sources were inhibitory to mineralization. Thus, although HCH degradation occurs during the application of either oxic or cycled anoxic/oxic DARAMEND treatments, mineralization of -HCH may be inhibited depending on the amendment and treatment protocol. 相似文献