首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitous intracellular calcium (Ca2+) channel which has a major role in controlling Ca2+ levels in neurons. A variety of computational models have been developed to describe the kinetic function of IP3R under different conditions. In the field of computational neuroscience, it is of great interest to apply the existing models of IP3R when modeling local Ca2+ transients in dendrites or overall Ca2+ dynamics in large neuronal models. The goal of this study was to evaluate existing IP3R models, based on electrophysiological data. This was done in order to be able to suggest suitable models for neuronal modeling. Altogether four models (Othmer and Tang, 1993; Dawson et al., 2003; Fraiman and Dawson, 2004; Doi et al., 2005) were selected for a more detailed comparison. The selection was based on the computational efficiency of the models and the type of experimental data that was used in developing the model. The kinetics of all four models were simulated by stochastic means, using the simulation software STEPS, which implements the Gillespie stochastic simulation algorithm. The results show major differences in the statistical properties of model functionality. Of the four compared models, the one by Fraiman and Dawson (2004) proved most satisfactory in producing the specific features of experimental findings reported in literature. To our knowledge, the present study is the first detailed evaluation of IP3R models using stochastic simulation methods, thus providing an important setting for constructing a new, realistic model of IP3R channel kinetics for compartmental modeling of neuronal functions. We conclude that the kinetics of IP3R with different concentrations of Ca2+ and IP3 should be more carefully addressed when new models for IP3R are developed.  相似文献   

2.
HL-1 cells are the adult cardiac cell lines available that continuously divide while maintaining an atrial phenotype. Here we examined the expression and localization of inositol 1,4,5-trisphosphate receptor (IP3R) subtypes, and investigated how pattern of IP3-induced subcellular local Ca2+ signaling is encoded by multiple IP3R subtypes in HL-1 cells. The type 1 IP3R (IP3R1) was expressed in the perinucleus with a diffuse pattern and the type 2 IP3R (IP3R2) was expressed in the cytosol with a punctate distribution. Extracellular ATP (1 mM) elicited transient intracellular Ca2+ releases accompanied by a Ca2+ oscillation, which was eliminated by the blocker of IP3Rs, 2-APB, and attenuated by ryanodine. Direct introduction of IP3 into the permeabilized cells induced Ca2+ transients with Ca2+ oscillations at ⩾ 20 μM of IP3, which was removed by the inhibition of IP3Rs using 2-APB and heparin. IP3-induced local Ca2+ transients contained two distinct time courses: a rapid oscillation and a monophasic Ca2+ transient. The magnitude of Ca2+ oscillation was significantly larger in the cytosol than in the nucleus, while the monophasic Ca2+ transient was more pronounced in the nucleus. These results provide evidence for the molecular and functional expression of IP3R1 and IP3R2 in HL-1 cells, and suggest that such distinct local Ca2+ signaling may be correlated with the punctate distribution of IP3R2s in the cytosol and the diffuse localization of IP3R1 in the peri-nucleus.  相似文献   

3.
Spinocerebellar ataxia type 15 (SCA15) is a group of human neurodegenerative disorders characterized by a slowly progressing pure cerebellar ataxia. The inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1) is an intracellular IP3-induced Ca2+ release channel that was recently identified as a causative gene for SCA15. In most case studies, a heterozygous deletion of the IP3R1 gene was identified. However, one Japanese SCA15 family was found to have a Pro to Leu (P1059L) substitution in IP3R1. To investigate the effect of the P1059L mutation, we analyzed the channel properties of the mutant human IP3R1 by expressing it in an IP3R-deficient B lymphocyte cell line. The P1059L mutant was a functional Ca2+ release channel with a twofold higher IP3 binding affinity compared to wild-type IP3R1. The cooperative dependence of the Ca2+ release activity of the mutant on IP3 concentration was reduced, but both wild-type and mutant receptors produced similar B cell receptor-induced Ca2+ signals. These results demonstrate that the Ca2+ release properties of IP3R1 are largely unaffected by the P1059L mutation.  相似文献   

4.
Purinergic signaling mediated by P2 receptors (P2Rs) plays important roles in embryonic and stem cell development. However, how it mediates Ca2+ signals in human embryonic stem cells (hESCs) and derived cardiovascular progenitor cells (CVPCs) remains unclear. Here, we aimed to determine the role of P2Rs in mediating Ca2+ mobilizations of these cells. hESCs were induced to differentiate into CVPCs by our recently established methods. Gene expression of P2Rs and inositol 1,4,5-trisphosphate receptors (IP3Rs) was analyzed by quantitative/RT-PCR. IP3R3 knockdown (KD) or IP3R2 knockout (KO) hESCs were established by shRNA- or TALEN-mediated gene manipulations, respectively. Confocal imaging revealed that Ca2+ responses in CVPCs to ATP and UTP were more sensitive and stronger than those in hESCs. Consistently, the gene expression levels of most P2YRs except P2Y1 were increased in CVPCs. Suramin or PPADS blocked ATP-induced Ca2+ transients in hESCs but only partially inhibited those in CVPCs. Moreover, the P2Y1 receptor-specific antagonist MRS2279 abolished most ATP-induced Ca2+ signals in hESCs but not in CVPCs. P2Y1 receptor-specific agonist MRS2365 induced Ca2+ transients only in hESCs but not in CVPCs. Furthermore, IP3R2KO but not IP3R3KD decreased the proportion of hESCs responding to MRS2365. In contrast, both IP3R2 and IP3R3 contributed to UTP-induced Ca2+ responses while ATP-induced Ca2+ responses were more dependent on IP3R2 in the CVPCs. In conclusion, a predominant role of P2Y1 receptors in hESCs and a transition of P2Y-IP3R coupling in derived CVPCs are responsible for the differential Ca2+ mobilization between these cells.  相似文献   

5.
In this study, we numerically analyzed the nonlinear Ca2+-dependent gating dynamics of a single, nonconducting inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel gating, Ca2+ buffering, and Ca2+ diffusion. The IP3R is a ubiquitous intracellular Ca2+ release channel that plays an important role in the formation of complex spatiotemporal Ca2+ signals such as waves and oscillations. Dynamic subfemtoliter Ca2+ microdomains reveal low copy numbers of Ca2+ ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic approach accounts for this molecular noise. We varied Ca2+ diffusion coefficients and buffer reaction rates to tune the autocorrelation properties of Ca2+ noise and found a distinct relation between the autocorrelation time τac, the mean channel open and close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times, caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent at elevated calcium concentrations, e.g., at [Ca2+] = 25 μM, τac = 0.082 ms, the IP3R open probability increased by ≈20% and mean open times increased by ≈4 ms, compared to a zero noise model. We identified the inactivating Ca2+ binding site of IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca2+ noise autocorrelation times decrease the probability of Ca2+ association and consequently increase IP3R activity. These results suggest a functional role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.  相似文献   

6.
Calcium puffs are local transient Ca2+ releases from internal Ca2+ stores such as the endoplasmic reticulum or the sarcoplasmic reticulum. Such release occurs through a cluster of inositol 1,4,5-trisphosphate receptors (IP3Rs). Based on the IP3R model (which is determined by fitting to stationary single-channel data) and nonstationary single-channel data, we construct a new IP3R model that includes time-dependent rates of mode switches. A point-source model of Ca2+ puffs is then constructed based on the new IP3R model and is solved by a hybrid Gillespie method with adaptive timing. Model results show that a relatively slow recovery of an IP3R from Ca2+ inhibition is necessary to reproduce most of the experimental outcomes, especially the nonexponential interpuff interval distributions. The number of receptors in a cluster could be severely underestimated when the recovery is sufficiently slow. Furthermore, we find that, as the number of IP3Rs increases, the average duration of puffs initially increases but then becomes saturated, whereas the average decay time keeps increasing linearly. This gives rise to the observed asymmetric puff shape.  相似文献   

7.
Intracellular Ca2+ release is a versatile second messenger system. It is modeled here by reaction-diffusion equations for the free Ca2+ and Ca2+ buffers, with spatially discrete clusters of stochastic IP3 receptor channels (IP3Rs) controlling the release of Ca2+ from the endoplasmic reticulum. IP3Rs are activated by a small rise of the cytosolic Ca2+ concentration and inhibited by large concentrations. Buffering of cytosolic Ca2+ shapes global Ca2+ transients. Here we use a model to investigate the effect of buffers with slow and fast reaction rates on single release spikes. We find that, depending on their diffusion coefficient, fast buffers can either decouple clusters or delay inhibition. Slow buffers have little effect on Ca2+ release, but affect the time course of the signals from the fluorescent Ca2+ indicator mainly by competing for Ca2+. At low [IP3], fast buffers suppress fluorescence signals, slow buffers increase the contrast between bulk signals and signals at open clusters, and large concentrations of buffers, either fast or slow, decouple clusters.  相似文献   

8.
9.
Spinocerebellar ataxia (SCA) is a neural disorder, which is caused by degenerative changes in the cerebellum. SCA is primarily characterized by gait ataxia, and additional clinical features include nystagmus, dysarthria, tremors and cerebellar atrophy. Forty-four hereditary SCAs have been identified to date, along with >35 SCA-associated genes. Despite the great diversity and distinct functionalities of the SCA-related genes, accumulating evidence supports the occurrence of a common pathophysiological event among several hereditary SCAs. Altered calcium (Ca2+) homeostasis in the Purkinje cells (PCs) of the cerebellum has been proposed as a possible pathological SCA trigger. In support of this, signaling events that are initiated from or lead to aberrant Ca2+ release from the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1), which is highly expressed in cerebellar PCs, seem to be closely associated with the pathogenesis of several SCA types. In this review, we summarize the current research on pathological hereditary SCA events, which involve altered Ca2+ homeostasis in PCs, through IP3R1 signaling.  相似文献   

10.
The inositol 1,4,5-trisphosphate (IP3)-mediated intracellular Ca2+ releases in secretory cells play vital roles in controlling not only the intracellular Ca2+ concentrations but also the Ca2+-dependent exocytotic processes. Of intracellular organelles that release Ca2+ in response to IP3, secretory granules stand out as the most prominent organelle and are responsible for the majority of IP3-dependent Ca2+ releases in the cytoplasm of chromaffin cells. Bovine chromaffin granules were the first granules that demonstrated the IP3-mediated Ca2+ release as well as the presence of the IP3 receptor (IP3R) in granule membranes. Secretory granules contain all three (type 1, 2, and 3) IP3R isoforms, and 58–69% of total cellular IP3R isoforms are expressed in bovine chromaffin granules. Moreover, secretory granules contain large amounts (2–4 mM) of chromogranins and secretogranins; chromogranins A and B, and secretogranin II being the major species. Chromogranins A and B, and secretogranin II are high-capacity, low-affinity Ca2+ binding proteins, binding 30–93 mol of Ca2+/mol of protein with dissociation constants of 1.5–4.0 mM. Due to this high Ca2+ storage properties of chromogranins secretory granules contain ~40 mM Ca2+. Furthermore, chromogranins A and B directly interact with the IP3Rs and modulate the IP3R/Ca2+ channels, i.e., increasing the open probability and the mean open time of the channels 8- to 16-fold and 9- to 42-fold, respectively. Coupled chromogranins change the IP3R/Ca2+ channels to a more ordered, release-ready state, whereby making the IP3R/Ca2+ channels significantly more sensitive to IP3.  相似文献   

11.
Calcium puffs are localized Ca2+ signals mediated by Ca2+ release from the endoplasmic reticulum (ER) through clusters of inositol trisphosphate receptor (IP3R) channels. The recruitment of IP3R channels during puffs depends on Ca2+-induced Ca2+ release, a regenerative process that must be terminated to maintain control of cell signaling and prevent Ca2+ cytotoxicity. Here, we studied puff termination using total internal reflection microscopy to resolve the gating of individual IP3R channels during puffs in intact SH-SY5Y neuroblastoma cells. We find that the kinetics of IP3R channel closing differ from that expected for independent, stochastic gating, in that multiple channels tend to remain open together longer than predicted from their individual open lifetimes and then close in near-synchrony. This behavior cannot readily be explained by previously proposed termination mechanisms, including Ca2+-inhibition of IP3Rs and local depletion of Ca2+ in the ER lumen. Instead, we postulate that the gating of closely adjacent IP3Rs is coupled, possibly via allosteric interactions, suggesting an important mechanism to ensure robust puff termination in addition to Ca2+-inactivation.  相似文献   

12.
Yoo SH 《Cell calcium》2011,50(2):175-183
The majority of secretory cell calcium is stored in secretory granules that serve as the major IP3-dependent intracellular Ca2+ store. Even in unicellular phytoplankton secretory granules are responsible for the IP3-induced Ca2+ release that triggers exocytosis. The number of secretory granules in the cell is directly related not only to the magnitude of IP3-induced Ca2+ release, which accounts for the majority of the IP3-induced cytoplasmic Ca2+ release in neuroendocrine cells, but also to the IP3 sensitivity of the cytoplasmic IP3 receptor (IP3R)/Ca2+ channels. Moreover, secretory granules contain the highest IP3R concentrations and the largest amounts of IP3Rs in any subcellular organelles in neuroendocrine cells. Secretory granules from phytoplankton to mammals contain large amounts of polyanionic molecules, chromogranins being the major molecules in mammals, in addition to acidic intragranular pH and high Ca2+ concentrations. The polyanionic molecules undergo pH- and Ca2+-dependent conformational changes that serve as a molecular basis for condensation-decondensation phase transitions of the intragranular matrix. Likewise, chromogranins undergo pH- and Ca2+-dependent conformational changes with increased exposure of the structure and increased interactions with Ca2+ and other granule components at acidic pH. The unique physico-chemical properties of polyanionic molecules appear to be at the center of biogenesis, and physiological functions of secretory granules in living organisms from primitive to advanced species.  相似文献   

13.
The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca2+ signaling by inositol trisphosphate receptors (IP3R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca2+-mediated interactions between IP3R. Ca2+ released by a cluster of IP3R (giving a local Ca2+ puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca2+ spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca2+ puffs (interpuff intervals, IPI) and Ca2+ spikes (interspike intervals) evoked by flash photolysis of caged IP3. We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca2+ spikes do not arise from oscillatory dynamics of IP3R clusters, but that repetitive Ca2+ spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.  相似文献   

14.
The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ release channel responsible for mobilizing stored Ca2+. Three different receptor types have been molecularly cloned, and their genes have been classified into a family. The gene for the type 1 receptor (IP3R1) is predominantly expressed in cerebellar Purkinje neurons, but its gene product is localized widely in a variety of tissues; however, there is little information on what types of cells express the other two receptor types, type 2 and type 3 (IP3R2 and IP3R3, respectively). We studied the expression of the IP3R gene family in various mouse tissues by in situ hybridization histochemistry. Compared with IP3R1, the levels of expression of IP3R2 and IP3R3 mRNAs were low in all of the tissues tested. IP3R2 mRNA was localized in the intralobular duct cells of the submandibular gland, the urinary tubule cells of the kidney, the epithelial cells of epididymal ducts and the follicular granulosa cells of the ovary, while the IP3R3 mRNA was distributed in gastric cells, salivary and pancreatic acinar cells and the epithelium of the small intestine. All of these cells which express either IP3R2 or IP3R3 mRNA are known to have a secretory function in which IP3/Ca2+ signalling has been shown to be involved, and thus either IP3R2 or IP3R3 may be a prerequisite to secretion in these cells.  相似文献   

15.
In order to develop a novel method of visualizing possible Ca~(2+) signaling during the early differentiation of h ESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters, we expressed the bioluminescent Ca~(2+) reporter, apo-aequorin, in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca~(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca~(2+) transients(generated by release from intracellular stores) were detected in 1–12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or Ca Cl_2, indicating that holo-f-aequorin was functional in these cells. Furthermore, following the addition of exogenous ATP, an inositol trisphosphate receptor(IP_3R) agonist, small Ca~(2+) transients were generated from day 1 onward. That ATP was inducing Ca~(2+) release from functional IP_3 Rs was demonstrated by treatment with 2-APB, a known IP_3 R antagonist. In contrast, following treatment with caffeine, a ryanodine receptor(Ry R) agonist, a minimal Ca~(2+) response was observed at day 8 of differentiation only. Thus, our data indicate that unlike Ry Rs, IP_3 Rs are present and continually functional at these early stages of cardiomyocyte differentiation.  相似文献   

16.
The PKD1 or PKD2 genes encode polycystins (PC) 1 and 2, which are associated with polycystic kidney disease. Previously we demonstrated that PC2 interacts with the inositol 1,4,5-trisphosphate receptor (IP3R) to modulate Ca2+ signaling. Here, we investigate whether PC1 also regulates IP3R. We generated a fragment encoding the last six transmembrane (TM) domains of PC1 and the C-terminal tail (QIF38), a section with the highest homology to PC2. Using a Xenopus oocyte Ca2+ imaging system, we observed that expression of QIF38 significantly reduced the initial amplitude of IP3-induced Ca2+ transients, whereas a mutation lacking the C-terminal tail did not. Thus, the C terminus is essential to QIF38 function. Co-immunoprecipitation assays demonstrated that through its C terminus, QIF38 associates with the IP3-binding domain of IP3R. A shorter PC1 fragment spanning only the last TM and the C-terminal tail also reduced IP3-induced Ca2+ release, whereas another C-terminal fragment lacking any TM domain did not. Thus, only endoplasmic reticulum-localized PC1 can modulate IP3R. Finally, we show that in the polarized Madin-Darby canine kidney cells, heterologous expression of full-length PC1 resulted in a smaller IP3-induced Ca2+ response. Overexpression of the IP3-binding domain of IP3R reversed the inhibitory effect of PC1, suggesting interaction of full-length PC1 (or its cleavage forms) with endogenous IP3R in Madin-Darby canine kidney cells. These results indicate that the behavior of full-length PC1 in mammalian cells is congruent with that of PC1 C-terminal fragments in the oocyte system. These data demonstrate that PC1 inhibits Ca2+ release, perhaps opposing the effect of PC2, which facilitates Ca2+ release through the IP3R.  相似文献   

17.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Their regulation by both IP3 and Ca2+ allows interactions between IP3Rs to generate a hierarchy of intracellular Ca2+ release events. These can progress from openings of single IP3R, through near-synchronous opening of a few IP3Rs within a cluster to much larger signals that give rise to regenerative Ca2+ waves that can invade the entire cell. We have used patch-clamp recording from excised nuclear membranes of DT40 cells expressing only IP3R3 and shown that low concentrations of IP3 rapidly and reversibly cause IP3Rs to assemble into small clusters. In addition to bringing IP3Rs close enough to allow Ca2+ released by one IP3R to regulate the activity of its neighbors, clustering also retunes the regulation of IP3Rs by IP3 and Ca2+. At resting cytosolic [Ca2+], lone IP3R are more sensitive to IP3 and the mean channel open time (~10ms) is twice as long as for clustered IP3R. When the cytosolic free [Ca2+] is increased to 1µM, to mimic the conditions that might prevail when an IP3R within a cluster opens, clustered IP3R are no longer inhibited and their gating becomes coupled. IP3, by dynamically regulating IP3R clustering, both positions IP3R for optimal interactions between them and it serves to exaggerate the effects of Ca2+ within a cluster. During the course of these studies, we have observed that nuclear IP3R stably express one of two single channel K + conductances (γK ~120 or 200pS). Here we demonstrate that for both states of the IP3R, the effects of IP3 on clustering are indistinguishable. These observations reinforce our conclusion that IP3 dynamically regulates assembly of IP3Rs into clusters that underlie the hierarchical recruitment of elementary Ca2+ release events.  相似文献   

18.
Familial Alzheimer’s disease (FAD)-causing mutant presenilins (PS) interact with inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) Ca2+ release channels resulting in enhanced IP3R channel gating in an amyloid beta (Aβ) production-independent manner. This gain-of-function enhancement of IP3R activity is considered to be the main reason behind the upregulation of intracellular Ca2+ signaling in the presence of optimal and suboptimal stimuli and spontaneous Ca2+ signals observed in cells expressing mutant PS. In this paper, we employed computational modeling of single IP3R channel activity records obtained under optimal Ca2+ and multiple IP3 concentrations to gain deeper insights into the enhancement of IP3R function. We found that in addition to the high occupancy of the high-activity (H) mode and the low occupancy of the low-activity (L) mode, IP3R in FAD-causing mutant PS-expressing cells exhibits significantly longer mean life-time for the H mode and shorter life-time for the L mode, leading to shorter mean close-time and hence high open probability of the channel in comparison to IP3R in cells expressing wild-type PS. The model is then used to extrapolate the behavior of the channel to a wide range of IP3 and Ca2+ concentrations and quantify the sensitivity of IP3R to its two ligands. We show that the gain-of-function enhancement is sensitive to both IP3 and Ca2+ and that very small amount of IP3 is required to stimulate IP3R channels in the presence of FAD-causing mutant PS to the same level of activity as channels in control cells stimulated by significantly higher IP3 concentrations. We further demonstrate with simulations that the relatively longer time spent by IP3R in the H mode leads to the observed higher frequency of local Ca2+ signals, which can account for the more frequent global Ca2+ signals observed, while the enhanced activity of the channel at extremely low ligand concentrations will lead to spontaneous Ca2+ signals in cells expressing FAD-causing mutant PS.  相似文献   

19.
Localized Ca2+ signals were consistently visualized in the formed somites of intact zebrafish embryos during the early segmentation period. Unlike the regular process of somitogenesis, these signals were stochastic in nature with respect to time and location. They did, however, occur predominantly at the medial and lateral boundaries within the formed somites. Embryos were treated with modulators of [Ca2+]i to explore the signal generation mechanism and possible developmental function of the stochastic transients. Blocking elements in the phosphoinositol pathway eliminated the stochastic signals but had no obvious effect, stochastic or otherwise, on the formed somites. Such treatments did, however, result in the subsequently formed somites being longer in the mediolateral dimension. Targeted uncaging of buffer (diazo‐2) or Ca2+ (NP‐ethyleneglycoltetraacetic acid [EGTA]) in the presomitic mesoderm, resulted in a regular mediolateral lengthening and shortening, respectively, of subsequently formed somites. These data suggest a requirement for IP3 receptor‐mediated Ca2+ release during convergence cell movements in the presomitic mesoderm, which appears to have a distinct function from that of the IP3 receptor‐mediated stochastic Ca2+ signaling in the formed somites.  相似文献   

20.
Oscillatory fluctuations in the cytosolic concentration of free calcium ions (Ca2+) are considered a ubiquitous mechanism for controlling multiple cellular processes. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) are intracellular Ca2+ release channels that mediate Ca2+ release from endoplasmic reticulum (ER) Ca2+ stores. The three IP3R subtypes described so far exhibit differential structural, biophysical, and biochemical properties. Subtype specific regulation of IP3R by the endogenous modulators IP3, Ca2+, protein kinases and associated proteins have been thoroughly examined. In this article we will review the contribution of each IP3R subtype in shaping cytosolic Ca2+ oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号