首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Habitat loss and fragmentation, exacerbated by projected climate change, present the greatest threats to preservation of global biodiversity. As increasing habitat fragmentation and isolation of residual fragments exceeds the dispersal capacity of species, there is the growing need to address connectivity to maintain diversity. Traditionally, habitat corridors have been proposed as a solution. But, the concept of corridors (barriers) is poorly understood; typically they are defined as linear habitats linking up habitat patchwork, and are advocated without a detailed understanding of the elements making up species’ habitats and the cost-effectiveness of alternative solutions. Yet, landscapes comprise an enormous range of ‘linear’ structures that can function in different ways to promote species’ persistence and diversity. In this review, a functional definition of corridor (barrier) is developed to give prominence to connectivity as opposed to ad hoc structures purported to advance connectivity. In developing the concept, urgency to accommodate environmental changes compels a growing emphasis on organism diversity rather than a preoccupation with single species conservation. The review, in focusing on butterflies to address the issue of corridors for patchwork connectivity, draws attention to fundamental divisions among organisms in any taxon: generalists and specialists. Both groups benefit from large patches as these necessarily house species with specialist resources as well as generalists with very different resource types. But, generalists and specialists require very different solutions for connectivity, from short-range habitat corridors and gateways for specialists to habitat and resource stepping stones (nodes, surfaces) for generalists. Connectivity over extensive areas is most critical for moderate generalists and their conservation requires emphasis being placed on space–time resource heterogeneity; landscape features, of whatever dimensionality and structure, provide a vital framework for developing the variety of suitable conditions and resources for enhancing their diversity.  相似文献   

4.
There is a growing recognition that to effectively conserve biodiversity efforts have to extend into the realm of engaging private landowners. Agricultural lands have been particularly attractive targets for integrating conservation and production goals. Changes in hayfield management associated with agricultural intensification, including earlier and more frequent harvests, have a severe impact on grassland birds. Government-administered conservation incentive programs benefit grassland birds by delaying harvest dates on enrolled land to allow nesting pairs to successfully fledge at least one brood during the breeding season. In contrast, hayfields that are mowed during the breeding season support sink populations and may function as ecological traps. We examined the effect of increasing levels of hayfield enrollment on grasshopper sparrow population viability using a spatially-explicit, stage-structured, stochastic model of a grasshopper sparrow metapopulation in an urbanizing region of New Jersey. The probability of metapopulation extinction (POE) decreased as the proportion of enrolled hayfields increased and fell below 10% when about half of all available agricultural land was enrolled. POE also decreased with increasing numbers of enrolled hayfields most likely because hayfield enrollment removes a sink population from the landscape in addition to creating a source population. Our results are encouraging as they demonstrate that extinction risk for this grassland-dependent imperiled species can be reduced without having to protect or manage all remaining grassland habitat in the landscape.  相似文献   

5.
The Land for Wildlife program started in Victoria in 1981 as a voluntary program with the broad aim of supporting landholders in providing habitat for wildlife on their property. The program has since spread across Australia and is implemented in a range of guises, through a variety of governance approaches. This research collected qualitative and quantitative data on Land for Wildlife programs across Australia to conduct the first national review. Data were gathered on changes in program membership to assess different participation trends. In addition, phone interviews with Land for Wildlife coordinators throughout Australia were conducted to explore how the programs are positioned in delivering biodiversity outcomes in a range of different regions. Over 14,000 properties covering 2.3 million ha are currently registered under Land for Wildlife programs. with at least 500,000 ha of habitat managed for conservation. Limited resources present a large challenge faced by a number of programs, with generally low funding and staffing resulting in restricted biodiversity focus and conservation outcomes. We suggest options to enhance the programs and propose future research directions.  相似文献   

6.
7.
8.
Marker-assisted conservation of European cattle breeds: An evaluation   总被引:1,自引:0,他引:1  
Two methods have been developed for the assessment of conservation priorities on the basis of molecular markers. According to the Weitzman approach, contributions to genetic diversity are derived from genetic distances between populations. Alternatively, diversity within and across populations is optimized by minimizing marker-estimated kinships. We have applied, for the first time, both methods to a comprehensive data set of 69 European cattle breeds, including all cosmopolitan breeds and several local breeds, for which genotypes of 30 microsatellite markers in 25–50 animals per breed have been obtained. Both methods were used to calculate the gain in diversity if a breed was added to a set of nine non-endangered breeds. Weitzman-derived diversities were confounded by genetic drift in isolated populations, which dominates the genetic distances but does not necessarily increase the conservation value of a breed. Marker-estimated kinships across populations were less disturbed by genetic drift than the Weitzman diversities and assigned high conservation values to Mediterranean breeds, which indeed have genetic histories that differ from the non-endangered breeds. Prospects and limitations of marker-assisted decisions on conservation priorities are discussed.  相似文献   

9.
Concern to protect wild plants began possibly as early as the eighteenth century. The early-Victorian liberal tide brought the first protests at the over-collecting of rarities, but it seemingly needed the shock of the mid-century fern craze to swing botanical opinion to the cause of moderation. Protective legislation and the establishment of sanctuaries thereafter became the twin concerns, but progress was disappointing. Conservation and the creation of reserves, the fruit of ecological thinking, rose to be the dominant aim only after the Second World War. Developments since then have been rapid and substantial.  相似文献   

10.
The present-day geographic distribution of individual species of five taxonomic groups (plants, dragonflies, butterflies, herpetofauna and breeding birds) is relatively well-known on a small scale (5 × 5 km squares) in Flanders (north Belgium). These data allow identification of areas with a high diversity within each of the species groups. However, differences in mapping intensity and coverage hamper straightforward comparisons of species-rich areas among the taxonomic groups. To overcome this problem, we modelled the species richness of each taxonomic group separately using various environmental characteristics as predictor variables (area of different land use types, biotope diversity, topographic and climatic features). We applied forward stepwise multiple regression to build the models, using a subset of well-surveyed squares. A separate set of equally well-surveyed squares was used to test the predictions of the models. The coincidence of geographic areas with high predicted species richness was remarkably high among the four faunal groups, but much lower between plants and each of the four faunal groups. Thus, the four investigated faunal groups can be used as relatively good indicator taxa for one another in Flanders, at least for their within-group species diversity. A mean predicted species diversity per mapping square was also estimated by averaging the standardised predicted species richness over the five taxonomic groups, to locate the regions that were predicted as being the most species-rich for all five investigated taxonomic groups together. Finally, the applicability of predictive modelling in nature conservation policy both in Flanders and in other regions is discussed.  相似文献   

11.
Although the vast majority of orthopterans are not pests, some species have the potential to cause serious damage to human interests. Management of pest populations frequently conflicts with conservation of orthopteran species and processes, particularly when the pest species or its ecological processes are susceptible to extinction or when the pest population is coincident with non-target orthopterans. With respect to chemical control, the greatest hazards are the broad-spectrum, highly lethal properties of most agents, which can be mitigated with formulation and application methods. Biological control risks permanent, large-scale changes to orthopteran species and processes which can be minimized with bioinsecticidal and other short-lived or selective formulations and reliable host-range testing. Cultural control may have large-scale, broad-spectrum impacts to non-target orthopterans, but these hazards can be diminished by appropriate testing and monitoring. Mechanical control methods may be impractically labour intensive, but they are highly target specific and therefore warrant further consideration. Social control measures such as education, insurance and compensation programmes appear to have little direct potential for harm to orthopteran conservation, but the complex socioeconomic and, ultimately, environmental consequences of such programmes have not been assessed. The melding of orthopteran pest management and conservation requires that we perceive these insects and their ecological processes to be vital elements of sustainable agroecosystems. Our management of orthopterans (both non-target and pest populations) must focus on keeping good stewards on the land.  相似文献   

12.
Amphibian populations are declining worldwide and this is causing growing concern. High levels of population declines followed by the expansion of red lists are creating demands for effective strategies to maximize conservation efforts for amphibians. Ideally, integrated and comprehensive strategies should be based on complementary information of population and species extinction risk. Here we evaluate the congruence between amphibian extinction risk assessments at the population level (Declining Amphibian Database––DAPTF) and at species level (GAA––IUCN Red List). We used the Declining Amphibian Database––DAPTF that covers 967 time-series records of amphibian population declines assigned into four levels of declines. We assigned each of its corresponding species into GAA––IUCN red list status, discriminated each species developmental mode, and obtained their geographic range size as well. Extinction risk assessments at the population and species level do not fully coincide across geographic realms or countries. In Paleartic, Neartic and Indo-Malayan realms less than 25% of species with reported population declines are formally classified as threatened. In contrast, more than 60% of all species with reported population declines that occur in Australasia and the Neotropics are indeed threatened according to the GAA––IUCN Red List. Species with aquatic development presented proportionally higher extinction risks at both population and species level than those with terrestrial development, being this pattern more prominent at Australasia, Paleartic, and Neartic realms. Central American countries, Venezuela, Mexico and Australia presented the highest congruence between both population and species risk. We address that amphibian conservation strategies could be improved by using complementary information on time-series population trends and species threat. Whenever feasible, conservation assessments should also include life-history traits in order to improve its effectiveness.  相似文献   

13.
14.
15.
16.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

17.
Artificial barriers such as wire fences constitute a common conservation management practice to protect vegetation from the browsing impact of large herbivores. Apart from protecting the fenced area, these barriers may affect the use of adjacent areas by animals. For example, they may interrupt major movement routes. We studied the effect of fences on an area used by red deer in Doñana National Park (Andalucía, south west Spain). We used an observational approach to study the effect of existing permanent barriers, and an experimental approach to investigate the effect of new barriers placed between the main areas through which animals moved from resting to foraging sites. Our study was carried out during the mating season, so we could also observe the effects on the distribution of females among harems. We found that “shadow areas”, where projection lines of the movement from resting to foraging areas were interrupted by the barrier, were used less by deer. In agreement with this result, grasses in shadow areas tended to be longer than in other areas, indicating unequal use of resources depending on the placement of barriers. Also, permanent barriers appeared to have negative, long-term effects on the maintenance of meadows as denoted by a higher proportion of rushes in meadows within shadow areas. Experimental barriers supported the cause-effect relationship by decreasing the number of deer using the experimental shadow areas. Our results demonstrated unexpected ecological effects of small barriers on the landscape, mediated by modification of the spatial behaviour of red deer.  相似文献   

18.
A genome-wide scan of Slovak Pinzgau cattle was prepared for the first time in order to estimate their genetic diversity at a more detailed level compared to previously published studies. The aim of this study was to describe the genetic diversity based on the runs of homozygosity (ROHs), linkage disequilibrium (LD) and effective population size (NeLD) using genome-wide data. Moreover, Bayesian clustering algorithms and multivariate methods were used to detect the population structure, potential admixture level and relationship between Austrian and Slovak Pinzgau cattle with respect to a large meta-population consisting of 15 European cattle breeds. The proportion of ROH segments ranged from 0.43 to 1.91% in Slovak Pinzgau, depending on the minimum size of an ROH. The genomic inbreeding coefficients were higher than the pedigree ones possibly due to the limited number of available generations in pedigree data. The observed NeLD was close to the limit value characterizing the endangerment status, based both on genomic and pedigree data. Population structure within analyzed breeds based on the Wright’s FST index, Nei’s genetic distances, and unsupervised as well as supervised analysis has been established. Overall, these analyses clearly distinguished populations based on their origin. A detailed analysis of the introgression of each breed into the Pinzgau breeds prepared using a Bayesian approach showed that the contribution of Holstein cattle in Austrian as well as Slovak Pinzgau was larger than contribution of beef breeds. A possible reason is the recent usage of Holstein sires to increase milk production. There are considerable differences between well-defined regions that clearly distinguish Austrian and Slovak Pinzgau, despite their close common history. Generally, the breeding program of Austrian Pinzgau is more focused on meat production than Slovak Pinzgau, which was clearly reflected in the obtained autozygosity islands. Considering the genetic establishment of Slovak Pinzgau population the genetic potential of the breed is insufficiently used. On a long term, more global breeding program including very close populations will be more efficient providing higher genetic progress and diversity. Established methodology how to distinguish genealogically close populations on high-throughput molecular information based of Slovak and Austrian Pinzgau can be proposed as general for analysis of differences in all highly related breeds.  相似文献   

19.
Bioassessment of running waters should ideally be optimized to include sampling of the biota when and where they are most sensitive to anthropogenic disturbances, but direct comparisons of the responses of biota across habitats and seasons are lacking. We sampled benthic macroinvertebrates from nine boreal streams situated along an agricultural land use gradient in two seasons (spring and autumn) and two habitats (pools and riffles). Univariate (e.g., diversity) and multivariate (ordination scores) metrics, as well as biological traits, were used to assess changes in assemblage composition associated with agricultural land use. Abundances were generally higher in agricultural compared to forested streams, and in riffles compared to pools. Spring samples had lower mean abundances of several insect taxa (e.g., chironomid midges) compared to autumn samples, while abundances of non-insects (e.g., oligochaetes and Pisidium spp.) remained unchanged. Community turnover (correspondence analysis) had higher precision and sensitivity compared to diversity metrics, and samples from the spring and from riffles responded more to the land use gradient than those from autumn and pool habitats, respectively. The finding that catchment land use resulted in macrohabitat differences and, ultimately, differences in taxonomic composition between agricultural and forested streams and between pool and riffle habitats can be used to optimize future bioassessment based on macroinvertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号