首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When foraging in communities with mixed prey, generalist predators may be confronted with prey species that differ in quality, size and mobility and interact with one another. To examine prey selection, predation by Macrolophus pygmaeus (Heteroptera: Miridae) was recorded by providing a diet of either one or two prey species of Myzus persicae (third‐instar nymphs), Aphis gossypii (fourth‐instar nymphs), Trialeurodes vaporariorum (third‐instar nymphs) and Ephestia kuehniella (eggs). In the experiments, prey mobility, prey quality and prey biomass were considered. The biomass consumed by the predator was dependent on the combination of prey species and the quantity of biomass offered. In choice experiments with diets mixed of two prey species at equal densities, the predation to A. gossypii was significantly reduced in the presence of E. kuehniella but the rate of consumption of M. persicae, T. vaporariorum and E.kuehniella was not significantly affected by the coexistence of any other species in the mixed prey diet. When equal amounts of biomass from two prey species were provided in combination, the total consumed biomass was significantly reduced in the mixed prey diets composed of E. kuehniella eggs and aphid nymphs. Thus, under the mixed‐prey situation, prey selection by predators may be affected by interactions among prey species differing in traits such as quality, mobility and size.  相似文献   

2.
Intraguild predation (IGP) is pervasive in many managed and unmanaged ecosystems and may have negative, neutral or positive effects on the biological control of pest insects. Both generalist predators and aphelinid parasitoids attack Bemisia tabaci (Gennadius) Biotype B (=B. argentifolii Perring & Bellows) on cotton in the southwestern USA. Free-choice and no-choice laboratory assays were conducted to quantify prey consumption patterns and preference by three representative generalist predators, Geocoris punctipes (Say), Orius insidiosus (Say), and Hippodamia convergens Guérin-Méneville, offered fourth instar B. tabaci nymphs and nymphs parasitized by Eretmocerus sp. nr. emiratus. All three predators showed a significant preference for larval and pupal stage parasitoids over early fourth instar nymphs, but G. punctipes and O. insidiosus were non-discriminating when offered a choice of larval parasitoids and late fourth instar nymphs. The potential implications of these observed patterns for the field were examined through sensitivity analyses of existing field life table data. First, preference for parasitized hosts alters the methods required for calculating marginal rates of parasitism. Incorporating a preference variable in the estimation procedure had a very small positive effect (0.02–1.13% change) on total generational mortalities observed in previous life table studies. However, further hypothetical analyses suggested that under circumstances of lower generational mortality and higher levels of either apparent parasitism or predation, high levels of predator preference for parasitized prey could alter estimates of total mortality as much as 14%. Second, although intraguild predation was demonstrated, the implications for biological control are unclear. Based on field life table data the rate of IGP ranged from 0.019 to 0.126 depending on predator species and prey comparison, but accounting for these levels of IGP had only small negative effects on total generational mortalities (0.193–1.278% change).  相似文献   

3.
Two experiments on the nymphal predation of Podisus maculiventris were conducted using Spodoptera litura larvae as prey. First experiment: The predator nymphs divided into three groups were reared individually from second instar to adult in a small vessel. Each nymph in the groups 1, 2 and 3 was allowed to attack the serially growing larvae (these were supplied at the rate of one per day) from 3-, 5- and 7-day old after hatching, respectively. The first prey used for the group 1 was so small that it was not only insufficient to satiate the predator but also was difficult to be searched out. But these disadvantages were soon recuperated due to the rapid growth of the prey and all nymphs could survive to adults. The survival rate of third and fourth instar nymphs in the group 3 was severely affected by vigorous counterattack of older prey larvae. Second experiment: The predator nymphs were individually reared either in a small vessel or in a large one at various rates of food supply (the prey larvae of 7-day old were used). The functional response curves obtained for each instar of the predator took a saturation type within a certain range of the prey density. The saturation level specific to each instar was generally higher for the predator reared in the large vessel than in the small one. The functional response of fourth and fifth instar nymphs was accelerated at a high prey density, viz. 16 larvae per vessel. Even at the low rate of food supply, viz. one larva per day per predator, the predator nymphs could survive to adults, but the size of resultant adults were abnormally small.  相似文献   

4.
We examined the effects of the presence of plant allelochemicals in prey diet, prey availability and supplemental plant material on the growth of the generalist predator Podisus maculiventris (Hemiptera: Pentatomidae). We tested two different nymphal stages of this predator. Third to fourth instar nymphs and fifth instar nymphs were fed a diet of prey (Manduca sexta larvae, Lepidoptera: Sphingidae) without allelochemicals in their diet or prey fed maximal levels of allelochemicals (tomatine, rutin and chlorogenic acid) found in their host plant (Lycopersicon esculentum). The nymphs were fed prey ad libitum, once every three days, or once every five days. They were given either no supplemental plant material or a 2 cm slice of green bean pod (Phaseolus vulgaris). We also conducted another experiment with fifth instar nymphs using the same conditions, except that mean levels of allelochemicals found in the host plant were fed to prey instead of maximal levels and the prey were provided either once a day or once every five days. For all experiments, prey scarcity depressed developmental rate, weight gain and relative growth rate. Overall, there was no negative effect of allelochemicals in the diet of the prey on these variables when predators were supplied with an excess of prey, but allelochemicals in the prey diet negatively affected these predators when prey were scarce. The addition of plant material to the diet of third to fourth instar nymphs did not have any effect on developmental rate, final dry weight, or relative growth rate. However, for fifth instar nymphs, the addition of plant material negatively affected these variables. Thus, the addition of plant material to the diet of the nymphs did not alleviate the negative effects of prey scarcity or allelochemicals in prey diet.  相似文献   

5.
A new method for post-mortem quantification of predation on prey items marked with protein antigens is described. First, short-term protein marking retention tests were conducted on the targeted prey, immature Lygus hesperus Knight (Heteroptera: Miridae). Chicken IgG, rabbit IgG, or soy milk proteins were readily detectable by a suite of protein specific enzyme-linked immunosorbent assays (ELISA) on the L. hesperus. Then, predator gut content assays were conducted on chewing and piercing–sucking type predators that consumed a 3rd instar L. hesperus marked with rabbit IgG. The rabbit IgG gut content ELISA detected the marked prey in the vast majority of both types of predators for up to 24 h after feeding. Finally, field cage studies were conducted to quantify predation rates of the natural cotton predator assemblage on protein marked L. hesperus nymphs. Each 4th instar L. hesperus marked with rabbit IgG, chicken IgG, and soy milk was released into one of 360 field cages containing a cotton plant and the natural population of predators. After 7 h, each caged plant was pulled from the field, the number of predaceous arthropods in each cage were tallied, and each individual predator was assayed for the presence of marked prey by a suite of protein-specific ELISAs. A procedural error with the soy mark application negated the anti-soy ELISA data, but the anti-rabbit IgG and anti-chicken IgG ELISAs pinpointed exactly which predators preyed on the IgG marked nymphs. The protein-specific gut ELISAs revealed that various members of Araneae, Heteroptera, and Coleoptera were the most common predators of the marked prey items. In all, 74 predation events were recorded in the guts of the 556 predators encountered in the field cages. Of these 26, 23, and 14 marked individuals were eaten by various members of Araneae, Heteroptera, and Coleoptera, respectively. This study verifies that prey immunomarking is a simple, versatile, and effective method for quantifying predation rates on L. hesperus.  相似文献   

6.
Both prey density and developmental stage of pests and natural enemies are known to influence the effectiveness of biological control. However, little is known about the interaction between prey density and population structure on predation and fecundity of generalist predatory mites. Here, we evaluated the functional response (number of prey eaten by predator in relation to prey density) of adult females and nymphs of the generalist predatory mite Euseius concordis to densities of different developmental stages of the cassava green mite Mononychellus tanajoa, as well as the fecundity of adult females of the predator. We further assessed the instantaneous rate of increase, based on fecundity and mortality, of E. concordis fed on eggs, immatures and adults of M. tanajoa. Overall, nymphs and adults of E. concordis feeding on eggs, immatures and females of M. tanajoa had a type III functional response curve suggesting that the predator increased prey consumption rate as prey density increased. Both nymphs and adult females of the predator consumed more eggs than immatures of M. tanajoa from the density of 20 items per leaf disc onwards, revealing an interaction between prey density and developmental stage in the predatory activity of E. concordis. In addition, population growth rate was higher when the predator fed on eggs and immatures in comparison with females. Altogether our results suggest that E. concordis may be a good candidate for the biological control of M. tanajoa populations. However, the efficiency of E. concordis as a biological control agent of M. tanajoa is contingent on prey density and population structure.  相似文献   

7.
Masking, a type of camouflage, has been argued to function as an anti-predator mechanism helping to avoid detection or recognition by a prey or predator. However, research focused on the effects of masking on life history traits is scarce. We evaluated under laboratory conditions whether developmental time and survivorship in the absence of predators, and the probability to be predated by a potential predator are affected when the blood-feeding triatomine Mepraia spinolai masks with sand particles. Theoretically, it is expected to find a positive anti-predator effect of masking and the presence of trade-offs between development time and survival. We assigned M. spinolai nymphs to a masked or non-masked treatment and subjected them to a lizard, a potential predator. Results show masked nymphs reach the fifth instar faster and survive longer than non-masked nymphs, which is inconsistent with the trade-offs hypothesis we expected to find. In predation experiments, higher number of masked nymphs detected lizards before lizards detected them compared to non-masked nymphs. We suggest that masking may be an adaptation to the extreme climatic conditions the nymphs must face, and seems to render selective advantages to M. spinolai nymphs even in the absence of selective forces.  相似文献   

8.
The nature and severity of intraguild interactions between predators and entomopathogens will be determined, in part, by a combination of threat of infection, and avoidance of that threat by the predator. We determined the threat of infection posed by the entomopathogen, Paecilomyces fumosoroseus (as PFR-97™) to the generalist predator, Dicyphus hesperus. We then asked if D. hesperus displays behavioral avoidance of infection while foraging for whitefly nymphs at different stages of infection by the pathogen. When exposed to leaf surfaces treated with the pathogen, 28% of adult female predators died due to infection. Consumption of Ephestia kuehniella eggs by surviving predators over 6 d was significantly reduced, suggesting effects of a sublethal infection. Whitefly nymphs that had been treated with P. fumosoroseus 3 d prior were acceptable as prey to D. hesperus but whitefly nymphs that had been treated with P. fumosoroseus 5 days prior were not. When foraging for whitefly nymphs, adult D. hesperus females rejected infected nymphs 96% of the time, compared to 39% of non-infected nymphs. Paecilomyces fumosoroseus therefore presents a measurable threat to D. hesperus through mortality and reduced prey consumption. Dicyphus hesperus does not avoid initial contact with infected prey but does not feed on such prey. The mechanism underlying these rejections could be due to either avoidance of infection or rejection of prey already consumed by the infectious agent. These results suggest that predation by D. hesperus foraging among infected whitefly nymphs under greenhouse or natural conditions could be reduced through a combination of pathogenicity and reduced efficiency of foraging.  相似文献   

9.
Prey that lives with functionally different predators may experience enhanced mortality risk, because of conflicts between the specific defenses against their predators. Because natural communities usually contain combinations of prey and functionally different predators, examining risk enhancement with multiple predators may help to understand prey population dynamics. It is also important in an applied context: risk enhancement with multiple biological control agents could lead to successful suppression of pests. We examined whether risk enhancement occurs in the spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when exposed to two predator species: a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), and a specialist predatory mite, Neoseiulus womersleyi Schicha (Acari: Phytoseiidae). We replicated microcosms that consisted of spider mites, ants, and predatory mites. Spider mites avoided generalist ants by staying inside their webs on leaf surfaces. In contrast, spider mites avoided specialist predatory mites that intruded into their webs by exiting the web, which obviously conflicts with the defense against ants. In the presence of both predators, enhanced mortality of spider mites was observed. A conflict occurred between the spider mites’ defenses: they seemed to move out of their webs and be preyed upon by ants. This is the first study to suggest that risk enhancement occurs in web‐spinning spider mites that are exposed to both generalist and specialist predator species, and to provide evidence that ants can have remarkable synergistic effects on the biological control of spider mites using specialist predatory mites.  相似文献   

10.
Predatory insects that depend upon particular prey animals are commonly regulated by the prey animal’s abundance. Nymphs of the giant water bug Kirkaldyia (=Lethocerus) deyrolli (Heteroptera: Belostomatidae) are predators regarded as specialists in feeding on tadpoles. We studied the ontogenetic diet shift of aquatic nymphs by quantifying instar abundance and by analyzing captured prey and prey relative abundance during the period of rice irrigation in three localities. We also evaluated the contribution of major prey items (tadpoles, frogs, and Odonata nymphs) on specific growth rates of each nymphal stage in a rearing experiment. First to third-instar nymphs of K. deyrolli fed mainly on tadpoles, regardless of differences in prey availability. Nymphs of subsequent fourth and fifth instar stages shifted from tadpoles to other prey animals within each rice field. A rearing experiment demonstrated that giant water bug nymphs provided with tadpoles had greater specific growth rates at all nymphal stages, except for the final stage, than nymphs fed other prey (frogs and Odonata nymphs). The emergence of young K. deyrolli nymphs seemed to coincide with the period during which tadpoles became abundant in the rice fields. Consumption of tadpoles seems important to allow the nymph to complete its larval development in an unstable temporary habitat. An erratum to this article can be found at  相似文献   

11.
1. Interactions between multiple predators can modify prey risk and profoundly alter ecological community dynamics. Further, ontogenic prey size changes are known to mediate prey risk through refuge effects. Understandings of these biotic factors is important for robust quantifications of natural enemy effects on target species, yet their combined influence lacks investigation. 2. Functional responses were used to quantify the predatory impacts of Notonecta glauca (water boatman; Ng) and Gammarus pulex (river shrimp; Gp) towards four different larval instars of Culex pipiens in container-style habitats. Using conspecific pairs of predators, multiple predator effects (MPEs) of both predator species were examined across larval prey sizes, and prey preference tests were applied to examine prey selectivity across predator–prey body size ratios. 3. Both predators were able to feed on C. pipiens across their larval ontogeny; however, Ng consumed significantly more larvae than Gp. Functional responses of Ng were typically Type IIs, whereas Gp trended towards sigmoidal Type IIIs. Predation by pairs of Ng and Gp showed independent MPEs towards first-, third-, and fourth-instar stages (except predation by Gp at higher densities of fourth-instar) stages, whereas, for second-instar stages, Ng showed synergistic MPEs and Gp showed antagonistic MPEs. Both predators preferred late instar mosquitoes (Ng: fourth instar; Gp: third instar). These preferences reflected predator:prey weight–length ratios, showing that relative sizes of predators and prey are important factors in prey selectivity. 4. The results obtained in the present study demonstrate that MPEs, combined with intraspecific prey preferences, may modulate trophic interactions within ecosystems. Therefore, such effects should be increasingly considered to further the understanding of agent efficacies.  相似文献   

12.
The nest provisions of a native predator species Bicyrtes quadrifasciata (Say) (Hymenoptera: Crabronidae) were surveyed and examined for the presence of nymphs of Halyomorpha halys, which is an invasive pest of many economically important agricultural crops in the U.S.A. We found 96% of the nest provisions of B. quadrifasciata were H. halys indicating the potential of B. quadrifasciata in biocontrol of this pest. Potential of B. quadrifasciata in regulating population dynamics of H. halys is discussed.  相似文献   

13.
As physiological factors may influence the predatory behavior of insects, this study was designed to evaluate the possible impact that hunger has on the search path of a polyphagous predator: Deraeocoris lutescens Schilling (Heteroptera: Miridae). D. lutescens was fed a diet of Rhopalosiphum padi (Linné) (Homoptera: Aphididae) nymphs and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs at 21±1 °C and a photoperiod of 16:8 (L:D). After moulting, third and fifth instar nymphs and adults were placed in Petri dishes containing an abundant food source for 24 h. After 24 h, the food was removed and groups were randomly assigned to increasing periods of prey deprivation. Each D. lutescens nymph or adult was placed at the center of an empty arena and its searching path was recorded to calculate different path parameters and to determine the type of movement mode adopted. Results show an effect of starvation on both nymphal and adult D. lutescens searching paths. Satiated third instar nymphs manifested an intensive search path whereas fifth instar nymphs and adults adopted an intermediate one. When starved, the extensive search path appeared early in young nymphs, and later in the last instar nymphs and adults, according to the degree of prey deprivation.  相似文献   

14.
Natural enemies that control pests usually allow farmers to avoid, or reduce, the use of pesticides. However, modern farming practices, that maximize yields, are resulting in loss of biodiversity, particularly prey diversity. Does this matter? Pests continue to thrive, and without alternative prey the predators should, perforce, concentrate their attentions upon the pests.We showed that a diverse diet significantly enhances predator fecundity and survival. Experiments were conducted using common generalist predators found in arable fields in Europe, the carabid beetle Pterostichus melanarius (Coleoptera: Carabidae) and the linyphiid spider Erigone atra (Araneae: Linyphiidae). We tested the hypothesis that mixed species diets were optimal, compared with restricted diets, with respect to parameters such as predator weights, egg weights, numbers of eggs laid, egg development times, egg hatching rates and predator survival. In carabids, an exclusive earthworm diet was as good as mixed diets containing earthworms for egg production and hatching, but less good than such mixed diets for increase in beetle mass and sustained egg laying. For spiders, aphids alone (Sitobion avenae) or with the Collembola Folsomia candida, drastically reduced survival. Aphids plus the Collembola Isotoma anglicana improved survival but only aphids with a mixed Collembola diet maximized numbers of hatching eggs.Predators offered only pests (slugs or aphids) had lowest growth rates and fecundity. We therefore demonstrated that conservation of a diversity of prey species within farmland, allowing predators to exploit a diverse diet, is essential if predators are to continue to thrive in crops and regulate agricultural pests.  相似文献   

15.
Introduced predators can have profound impacts on prey populations, with subsequent ramifications throughout entire ecosystems. However, studies of predator–prey interaction strengths in community and food-web analyses focus on adults or use average body sizes. This ignores ontogenetic changes, or lack thereof, in predatory capabilities over the life-histories of predators. Additionally, large individual predators might not be physically capable of consuming very small prey individuals. Both situations are important to resolve, as native prey may or may not therefore experience ontogenetic or size refuges from invasive predators. Here, we find that the freshwater amphipod invader, Gammarus pulex, is predatory throughout its development from juvenile through to adult. All size classes collected in the field had a common prey, nymphs of the mayfly Baetis rhodani, in their guts. In an experiment with predator, prey and experimental arenas scaled for body size, G. pulex juveniles and adults consumed B. rhodani in all size-matched categories. In a second experiment, the largest G. pulex individuals were able to prey on the smallest B. rhodani. Thus, the prey do not benefit from any ontogenetic or size refuge from the predator. This corroborates with the known negative population abundance relationships between this invasive predator and its native prey species. Understanding and predicting invasive predator impacts will be best served when interactions among all life-history stages of predator and prey are considered.  相似文献   

16.
The influence of prey choice on the predation of a target prey item by a polyphagous insect predator was investigated in field plot studies. The target prey consisted of eggs of the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), and the predator was the 12‐spotted ladybeetle, Coleomegilla maculata Lengi (Coleoptera: Coccinellidae). Eggs of the European corn borer (ECB), Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae), and nymphs and adults of the green peach aphid, Myzus persicae Sulzer (Homoptera: Aphididae), comprised the alternative prey choices. The objectives of these studies were to: (1) examine predation in a multiprey scenario likely to occur in an agroecosystem, and (2) use the data to simulate the impact of predator‐induced mortality on the evolution of resistance to Bt‐transgenic plants in the target herbivore. Simulations of the rate of resistance evolution were carried out using a deterministic genetic model. Experiments were performed using potato field plots planted in a manner reflecting a 25% or 50% non‐transgenic refuge. CPB eggs were infested so as to mimic the densities of resistant and susceptible populations that might occur in commercial Bt‐transgenic plantings. Densities of predators and alternate prey species were chosen to represent those that might typically occur in potato crops in the eastern USA. Simulation results indicated that when ECB eggs were present, predation on CPB eggs either became inversely spatially density‐dependent, or increased significantly in a density‐dependent manner. When aphids were present, predation became positively density‐dependent. Model simulations predicted that ECB egg presence is beneficial, in that resistance was delayed by up to 40 pest generations (as compared to the scenario with CPB as the only prey), while aphid presence accelerated resistance evolution by 18 generations. Results suggest that resistance management strategies should take into account the composition of prey species available to generalist predators typically present, so as to best delay pest adaptation to Bt‐toxins.  相似文献   

17.
Intraguild predation of Orius majusculus (Reuter) (Heteroptera: Anthocoridae) on Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae), both natural enemies of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was studied under laboratory conditions. The experiments quantified prey consumption by 5th instar nymphs and adults of O. majusculus offered unparasitised 3rd, early 4th or 4th instar B. tabaci nymphs or parasitised nymphs containing 2nd or 3rd larval instar or pupal parasitoids. In addition, prey preference of the two stages of O. majusculus for parasitised or unparasitised whitefly nymphs was studied using nine different prey combinations. Both predator stages readily preyed upon on both unparasitised and parasitised B. tabaci. In no-choice experiments, predation on 3rd instar E. formosa by adult predators was the highest, while predator nymphs preyed most on unparasitised 3rd instar B. tabaci and 2nd instar parasitoids. Predation of predator stages was lowest on 4th instar B. tabaci and E. formosa pupae. In all prey combinations, both stages of O. majusculus showed a significant preference for parasitised over unparasitised whitefly nymphs except for the combination of 5th instars of O. majusculus with early 4th instar whiteflies and E. formosa pupae. The results indicate that intraguild interactions between O. majusculus and E. formosa may have negative effects on biological control of B. tabaci.  相似文献   

18.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

19.
Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short‐range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle‐web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.  相似文献   

20.
The damsel bug, Nabis pseudoferus Remane (Hemiptera: Namidae), is a generalist predator of small arthropods, including key insect pests of vegetable crops. In this study, we characterized the predation and development of various N. pseudoferus life stages when preying on the eggs and first- and fourth-instar nymphs of the invasive South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). These findings were compared to those of the bug’s common prey, cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Of the life stages tested, females showed the highest predation rate on all tested prey, due to their high longevity, large body, and great energy requirements for reproduction. The predator’s oviposition rate was clearly influenced by prey type, and was highest when feeding on fourth instars of T. absoluta. Considering the zoophytophagy of most of the life stages of other mirid species of tomato, and the lower propensity of N. pseudoferus to feed on plants, these results show that this species can be considered as a key indigenous natural enemy for sustainable pest control packages against T. absoluta in newly invaded areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号