首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated sodium channels carry the major inward current responsible for action potential depolarization in excitable cells as well as providing additional inward current that modulates overall excitability. Both their expression and function is under tight control of protein phosphorylation by specific kinases and phosphatases and this control is particular to each type of sodium channel. This article examines the impact and mechanism of phosphorylation for isoforms where it has been studied in detail in an attempt to delineate common features as well as differences.  相似文献   

2.
The first step in transepithelial sodium absorption lies at the apical membrane where the amiloride-sensitive, epithelial sodium channel, ENaC, facilitates sodium entry into the cell. Here we report that the vesicle traffic regulatory (SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)) protein, syntaxin 1A (S1A), inhibits ENaC mediated sodium entry. This inhibitory effect is selective for S1A and is not reproduced by syntaxin 3. The inhibition does not require the membrane anchoring domain of syntaxin 1A. It was reversed by the S1A-binding protein, Munc-18, but not by a Munc-18 mutant, which lacks syntaxin affinity. Immunostaining of epitope-tagged ENaC subunits showed that syntaxin 1A decreases ENaC current by reducing the number of ENaC channels in the plasma membrane; S1A does not interfere with ENaC protein expression. Immunoprecipitation of syntaxin 1A from the sodium-transporting epithelial cell line, A6, co-precipitates ENaC. These findings indicate that syntaxin 1A and other members of the SNARE machinery are involved in the control of plasma membrane ENaC content, and they suggest that SNARE proteins participate in the regulation of sodium absorption in relation to agonist mediated vesicle insertion-retrieval processes.  相似文献   

3.
4.
ENaC, the sodium-selective amiloride-sensitive epithelial channel, mediates electrogenic sodium re-absorption in tight epithelia and is deeply associated with human hypertension. The ENaC expression at plasma membrane requires the regulated transport, processing, and macromolecular assembly in a defined and highly compartmentalized manner. Ras-related Rab GTPases regulate intracellular trafficking during endocytosis, regulated exocytosis, and secretion. To evaluate the role of these proteins in regulating amiloride-sensitive sodium channel activity, multiple Rab isoforms 3, 5, 6, and Rab27a were expressed in HT-29 cells. Rab3 and Rab27a inhibited ENaC currents, while the expression of other Rab isoforms failed to elicit any statistically significant effect on amiloride-sensitive currents. The immunoprecipitation experiments suggest protein-protein interaction of Rab3 and Rab27a with epithelial sodium channel. Biotinylation studies revealed that modulation of ENaC function is due to the reduced apical expression of channel proteins. Study also indicates that Rabs do not appear to affect the steady-state level of total cellular ENaC. Alternatively, introduction of isoform-specific small inhibitory RNA (SiRNA) reversed the Rab-dependent inhibition of amiloride-sensitive currents. These observations point to the involvement of multiple Rab proteins in ENaC transport through intracellular routes like exocytosis, recycling from ER to plasma membrane or degradation and thus serve as potential target for human hypertension.  相似文献   

5.
The first step in net active transepithelial transport of sodium in tight epithelia is mediated by the amiloride-blockable sodium channel in the apical membrane. This sodium channel is the primary site for discretionary control of total body sodium and, therefore, investigating its regulatory mechanisms is important to our understanding of the physiology of fluid and electrolyte balance. Because essentially all of the regulatory sites on the channel are on the intracellular surface, patch clamp methods have proven extremely useful in the electrophysiological characterization of the sodium channel by isolating it from other channel proteins in the epithelial membrane and by allowing access to the intracellular surface of the protein. We have examined three different regulatory mechanisms. (1) Inhibition of channel activity by activation of protein kinase C; (2) activation of the channel by agents which activate G-proteins; and (3) modulation of channel kinetics and channel number by mineralocorticoids. Activation of protein kinase C by phorbol esters or synthetic diacylglycerols reduces the open probability of sodium channels. Protein kinase C can be activated in a physiological context by enhancing apical sodium entry. Actions which reduce sodium entry (low luminal sodium concentrations or the apical application of amiloride) increase channel open probability. The link between sodium entry and activation of protein kinase C appears to be mediated by intracellular calcium activity linked to sodium via a sodium/calcium exchange system. Thus, the intracellular sodium concentration is coupled to sodium entry in a negative feedback loop which promotes constant total entry of sodium. Activation of G-proteins by pertussis toxin greatly increases the open probability of sodium channels. Since channels can also be activated by pertussis toxin or GTP gamma S in excised patches, the G-protein appears to be closely linked in the apical membrane to the sodium channel protein itself. The mechanism for activation of this apical G-protein, when most hormonal and transmitter receptors are physically located on the basolateral membrane, is unclear. Mineralocorticoids such as aldosterone have at least two distinct effects. First, as expected, increasing levels of aldosterone increase the density of functional channels detectable in the apical membrane. Second, contrary to expectations, application of aldosterone increases the open probability of sodium channels. Thus aldosterone promotes the functional appearance of new sodium channels and promotes increased sodium entry through both new and pre-existant channels.  相似文献   

6.
Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in leukemia K562 cells. The channels were activated by cytochalasin-induced disruption of actin filaments and inactivated by G-actin under ionic conditions promoting rapid actin polymerization. CapZ had no direct effect on channel activity. However, being added together with G-actin, CapZ prevented actin-induced channel inactivation, and this effect occurred at CapZ/actin molar ratios from 1:5 to 1:100. When actin was allowed to polymerize at the plasma membrane to induce partial channel inactivation, subsequent addition of CapZ restored the channel activity. These results can be explained by CapZ-induced inhibition of further assembly of actin filaments at the plasma membrane due to the modification of actin dynamics by CapZ. No effect on the channel activity was observed in response to F-actin, confirming that the mechanism of channel inactivation does not involve interaction of the channel with preformed filaments. Our data show that actin-capping protein can participate in the cytoskeleton-associated regulation of sodium transport in nonexcitable cells.  相似文献   

7.
The epithelial Na+ channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.  相似文献   

8.
The epithelial sodium channel ENaC is physiologically important in the kidney for the regulation of the extracellular fluid volume, and in the lungs for the maintenance of the appropriate airway surface liquid volume that lines the pulmonary epithelium. Besides the regulation of ENaC by hormones, intracellular factors such as Na(+) ions, pH, or Ca(2+) are responsible for fast adaptive responses of ENaC activity to changes in the intracellular milieu. In this study, we show that ENaC is rapidly and reversibly inhibited by internal sulfhydryl-reactive molecules such as methanethiosulfonate derivatives of different sizes, the metal cations Cd(2+) and Zn(2+), or copper(II) phenanthroline, a mild oxidizing agent that promotes the formation of disulfide bonds. At the single channel level, these agents applied intracellularly induce the appearance of long channel closures, suggesting an effect on ENaC gating. The intracellular reducing agent dithiothreitol fully reverses the rundown of ENaC activity in inside-out patches. Our observations suggest that changes in intracellular redox potential modulate ENaC activity and may regulate ENaC-mediated Na(+) transport in epithelia. Finally, substitution experiments reveal that multiple cysteine residues in the amino and carboxyl termini of ENaC subunits are responsible for this thiol-mediated inhibition of ENaC.  相似文献   

9.
The epithelial sodium channel (ENaC) constitutes the rate-limiting step for sodium absorption across airway epithelia, which in turn regulates airway surface liquid (ASL) volume and the efficiency of mucociliary clearance. This role in ASL volume regulation suggests that ENaC activity is influenced by local factors rather than systemic signals indicative of total body volume homeostasis. Based on reports that ENaC may be regulated by extracellular serine protease activity in Xenopus and mouse renal epithelia, we sought to identify proteases that serve similar functions in human airway epithelia. Homology screening of a human airway epithelial cDNA library identified two trypsin-like serine proteases (prostasin and TMPRSS2) that, as revealed by in situ hybridization, are expressed in airway epithelia. Functional studies in the Xenopus oocyte expression system demonstrated that prostasin increased ENaC currents 60--80%, whereas TMPRSS2 markedly decreased ENaC currents and protein levels. Studies of primary nasal epithelial cultures in Ussing chambers revealed that inhibition of endogenous serine protease activity with aprotinin markedly decreased ENaC-mediated currents and sensitized the epithelia to subsequent channel activation by exogenous trypsin. These data, therefore, suggest that protease-mediated regulation of sodium absorption is a function of human airway epithelia, and prostasin is a likely candidate for this activity.  相似文献   

10.
11.
The epithelial Na+ channel (ENaC) plays a central role in control of epithelial surface hydration and vascular volume. ENaC activity in these epithelia is limiting for sodium reabsorption. Abnormalities in ENaC function have been linked to disorders of total body Na+ homeostasis, blood volume, blood pressure, and lung fluid balance. Recently, ion channels were recognized as physiologically important effectors of small GTP-binding proteins and phosphatidylinositides. We review here recent findings relevant to regulation of ENaC by small G proteins and phosphatidylinositides.  相似文献   

12.
13.
14.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

15.
Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.  相似文献   

16.
CK2 is a ubiquitous, pleiotropic, and constitutively active Ser/Thr protein kinase that controls protein expression, cell signaling, and ion channel activity. Phosphorylation sites for CK2 are located in the C terminus of both beta- and gamma-subunits of the epithelial Na(+) channel (ENaC). We examined the role of CK2 on the regulation of both endogenous ENaC in native murine epithelia and in Xenopus oocytes expressing rENaC. In Ussing chamber experiments with mouse airways, colon, and cultured M1-collecting duct cells, amiloride-sensitive Na(+) transport was inhibited dose-dependently by the selective CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). In oocytes, ENaC currents were also inhibited by TBB and by the structurally unrelated inhibitors heparin and poly(E:Y). Expression of a trimeric channel lacking both CK2 sites (alphabeta(S631A)gamma(T599A)) produced a largely attenuated amiloride-sensitive whole cell conductance and rendered the mutant channel insensitive to CK2. In Xenopus oocytes, CK2 was translocated to the cell membrane upon expression of wt-ENaC but not of alphabeta(S631A)gamma(T599A)-ENaC. Phosphorylation by CK2 is essential for ENaC activation, and to a lesser degree, it also controls membrane expression of alphabetagamma-ENaC. Channels lacking the Nedd4-2 binding motif in beta-ENaC (R561X, Y618A) no longer required the CK2 site for channel activity and siRNA-knockdown of Nedd4-2 eliminated the effects of TBB. This implies a role for CK2 in inhibiting the Nedd4-2 pathway. We propose that the C terminus of beta-ENaC is targeted by this essential, conserved pleiotropic kinase that directs its constitutive activity toward many cellular protein complexes.  相似文献   

17.
18.
Mechanisms of regulation of epithelial sodium channel by SGK1 in A6 cells   总被引:2,自引:0,他引:2  
The serum and glucocorticoid induced kinase 1 (SGK1) participates in the regulation of sodium reabsorption in the distal segment of the renal tubule, where it may modify the function of the epithelial sodium channel (ENaC). The molecular mechanism underlying SGK1 regulation of ENaC in renal epithelial cells remains controversial. We have addressed this issue in an A6 renal epithelial cell line that expresses SGK1 under the control of a tetracycline-inducible system. Expression of a constitutively active mutant of SGK1 (SGK1T(S425D)) induced a sixfold increase in amiloride-sensitive short-circuit current (Isc). Using noise analysis we demonstrate that SGK1 effect on Isc is due to a fourfold increase in the number of functional ENaCs in the membrane and a 43% increase in channel open probability. Impedance analysis indicated that SGK1T(S425D) increased the absolute value of cell equivalent capacitance by an average of 13.7%. SGK1T(S425D) also produced a 1.6-1.9-fold increase in total and plasma membrane subunit abundance, without changing the half-life of channels in the membrane. We conclude that in contrast to aldosterone, where stimulation of transport can be explained simply by an increase in channel synthesis, SGK1 effects are more complex and involve at least three actions: (1) increase of ENaC open probability; (2) increase of subunit abundance within apical membranes and intracellular compartments; and (3) activation of one or more pools of preexistent channels within the apical membranes and/or intracellular compartments.  相似文献   

19.
Studies aiming at the elucidation of the genetic basis of rare monogenic forms of hypertension have identified mutations in genes coding for the epithelial sodium channel ENaC, for the mineralocorticoid receptor, or for enzymes crucial for the synthesis of aldosterone. These genetic studies clearly demonstrate the importance of the regulation of Na+ absorption in the aldosterone-sensitive distal nephron (ASDN), for the maintenance of the extracellular fluid volume and blood pressure.Recent studies aiming at a better understanding of the cellular and molecular basis of ENaC-mediated Na+ absorption in the distal part of nephron, have essentially focused on the regulation ENaC activity and on the aldosterone-signaling cascade. ENaC is a constitutively open channel, and factors controlling the number of active channels at the cell surface are likely to have profound effects on Na+ absorption in the ASDN, and in the amount of Na+ that is excreted in the final urine.A number of membrane-bound proteases, kinases, have recently been identified that increase ENaC activity at the cell surface in heterologous expressions systems. Ubiquitylation is a general process that regulates the stability of a variety of target proteins that include ENaC. Recently, deubiquitylating enzymes have been shown to increase ENaC activity in heterologous expressions systems.These regulatory mechanisms are likely to be nephron specific, since in vivo studies indicate that the adaptation of the renal excretion of Na+ in response to Na+ diet occurs predominantly in the early part (the connecting tubule) of the ASDN.An important work is presently done to determine in vivo the physiological relevance of these cellular and molecular mechanisms in regulation of ENaC activity. The contribution of the protease-dependent ENaC regulation in mediating Na+ absorption in the ASDN is still not clearly understood. The signaling pathway that involves ubiquitylation of ENaC does not seem to be absolutely required for the aldosterone-mediated control of ENaC. These in vivo physiological studies presently constitute a major challenge for our understanding of the regulation of ENaC to maintain the Na+ balance.  相似文献   

20.
The high selectivity, low conductance, amiloride-blockable, sodium channel of the mammalian distal nephron (i.e. cortical collecting tubule) is the site of discretionary regulation which allows maintainance of total body sodium balance. In order to understand the physiological events that participate in this regulation, we have used the patch-clamp technique which allows us to measure individual Na+ channel currents and permits access to the cytosolic side of the channel-protein as well as its associated regulatory components. Most of our experiments have utilized the A6 amphibian renal cell line, which when grown on permeable supports is an excellent model for the mammalian distal nephron. Different mechanisms have been examined: (1) regulation by hormonal factors such as Anti-Diuretic Hormone (ADH) and aldosterone, (2) regulation by G-proteins, (3) modulation by protein kinase C (PK-C), and (4) modulation by products of arachidonic acid metabolism. Consistent with noise analysis of tight epithelial tissues, ADH treatment increased the number of active channels in apical membrane patches of A6 cells, without any apparent change in the open probability (Po) of the individual channels. Agents that increased intracellular cAMP mimicked the effects of ADH. In contrast, aldosterone was found to act through a dramatic increase in Po rather than through changes in channel density. Inhibition of methylation by deazaadenosine antagonizes the stimulatory effect of aldosterone. In excised inside-out patches GTPS inhibits channel activity, whereas GDPS or pertussis toxin stimulates activity suggesting regulatory control by G-proteins. PK-C has been shown to contribute to feed-back inhibition of apical Na+ conductance in tight epithelia. Raising luminal bath sodium and therefore intracellular Na+ inhibits sodium channel activity, an effect that is prevented by PK-C inhibitors and mimicked by PK-C agonists. Cyclooxygenase metabolites of arachidonic acid have an inhibitory effect on channel activity. Finally, a possible role for tyrosine kinase as well as membrane cytoskeleton in the regulation of sodium channel function is also suggested.Abbreviations ADH Anti Diuretic Hormone - AVP Arginine Vasopressin - dBcAMP diButyryl-cyclic Adenosine Mono Phosphate - NMDG N-methyl-D-glucamine - PK-A Protein Kinase A - PK-C Protein kinase C - GTP Guanosine 5-Triphosphate - GDPS Guanosine 5-O-(2-thiodiphosphate) - GTPS Guanosine 5-O-(3-thiotri-phosphate) - G-protein Trimeric Guanosine Dependent Protein - Gi–3 subunit of the Gi–3 type G- protein - CCT Cortical Collecting Tubule - PTX Pertussis Toxin - IMCD Inner Medulary Collecting Duct - cAMP Adenosine 3:5-cyclic Monophosphate - cGMP Guanosine 3:5-cyclic Monophosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号