首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition probabilities from susceptible to diseased states are given in terms of the binomial distribution. An expression is given for the probability that any individuals beyond those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large variability in both the total number of infected individuals and in the total duration of the epidemic, even when the variability in number of contacts per day is small. In the case of no recovery, R=infinity, a formal diffusion approximation is obtained for the number infected. The mean for the diffusion process can be approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics. For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the parameters p (the probability of transmission), R, and the number of contacts per day per individual. A scale invariant property is noted for the size of an outbreak in relation to the total population size. Most notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely large differences in the sizes of outbreaks which can occur for small changes in R. These findings have practical applications in controlling the size and duration of epidemics and hence reducing their human and economic costs.  相似文献   

2.
1. This paper explores the concept of the critical community size for persistence of infection in wildlife populations. We use as a case study the 1988 epidemic of phocine distemper virus in the North Sea population of harbour seals, Phoca vitulina .
2. We summarize the available data on this epidemic and use it to parameterize a stochastic compartmental model for an infection spreading through a spatial array of patches coupled by nearest-neighbour mixing, with replacement of susceptibles occurring as a discrete annual event.
3. A combination of analytical and simulation techniques is used to show that the high levels of transmission between different seal subpopulations, combined with the small annual birth cohort, act to make persistence of infection impossible in this harbour seal population at realistic population levels. The well known mechanisms by which metapopulation structures may act to promote persistence can be seen to have an effect only at weaker levels of spatial coupling, and higher levels of host recruitment, than those empirically observed.  相似文献   

3.
We study the SIS and SIRI epidemic models discussing different approaches to compute the thresholds that determine the appearance of an epidemic disease. The stochastic SIS model is a well known mathematical model, studied in several contexts. Here, we present recursively derivations of the dynamic equations for all the moments and we derive the stationary states of the state variables using the moment closure method. We observe that the steady states give a good approximation of the quasi-stationary states of the SIS model. We present the relation between the SIS stochastic model and the contact process introducing creation and annihilation operators. For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we present the phase transition lines using the mean field and the pair approximation for the moments. We use a scaling argument that allow us to determine analytically an explicit formula for the phase transition lines in pair approximation.  相似文献   

4.
We introduce a recursive algorithm which enables the computation of the distribution of epidemic size in a stochastic SIR model for very large population sizes. In the important parameter region where the model is just slightly supercritical, the distribution of epidemic size is decidedly bimodal. We find close agreement between the distribution for large populations and the limiting case where the distribution is that of the time a Brownian motion hits a quadratic curve. The model includes the possibility of vaccination during the epidemic. The effects of the parameters, including vaccination level, on the form of the epidemic size distribution are explored.  相似文献   

5.
In this paper, we outline the theory of epidemic percolation networks and their use in the analysis of stochastic susceptible-infectious-removed (SIR) epidemic models on undirected contact networks. We then show how the same theory can be used to analyze stochastic SIR models with random and proportionate mixing. The epidemic percolation networks for these models are purely directed because undirected edges disappear in the limit of a large population. In a series of simulations, we show that epidemic percolation networks accurately predict the mean outbreak size and probability and final size of an epidemic for a variety of epidemic models in homogeneous and heterogeneous populations. Finally, we show that epidemic percolation networks can be used to re-derive classical results from several different areas of infectious disease epidemiology. In an Appendix, we show that an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model in a closed population and prove that the distribution of outbreak sizes given the infection of any given node in the SIR model is identical to the distribution of its out-component sizes in the corresponding probability space of epidemic percolation networks. We conclude that the theory of percolation on semi-directed networks provides a very general framework for the analysis of stochastic SIR models in closed populations.  相似文献   

6.
A three-stage stochastic epidemic model extending the so-called classical epidemic process to one that includes time-dependent transition probabilities is described, and a solution to the appropriate set of forward differential-difference equations is given. When an individual can move from being a susceptible to one infected with the HIV virus to one diagnosed as having AIDS, we can use this general model to describe an AIDS epidemic process. We obtain expressions for the mean and variance of the number of AIDS cases for some special cases. By comparing these with actual data, it is suggested that, for some categories of cases (in particular, children), this model might be a plausible model to describe the underlying mechanism of the AIDS epidemic.  相似文献   

7.
Density-independent and density-dependent, stochastic and deterministic, discrete-time, structured models are formulated, analysed and numerically simulated. A special case of the deterministic, density-independent, structured model is the well-known Leslie age-structured model. The stochastic, density-independent model is a multitype branching process. A review of linear, density-independent models is given first, then nonlinear, density-dependent models are discussed. In the linear, density-independent structured models, transitions between states are independent of time and state. Population extinction is determined by the dominant eigenvalue λ of the transition matrix. If λ ≤ 1, then extinction occurs with probability one in the stochastic and deterministic models. However, if λ > 1, then the deterministic model has exponential growth, but in the stochastic model there is a positive probability of extinction which depends on the fixed point of the system of probability generating functions. The linear, density-independent, stochastic model is generalized to a nonlinear, density-dependent one. The dependence on state is in terms of a weighted total population size. It is shown for small initial population sizes that the density-dependent, stochastic model can be approximated by the density-independent, stochastic model and thus, the extinction behavior exhibited by the linear model occurs in the nonlinear model. In the deterministic models there is a unique stable equilibrium. Given the population does not go extinct, it is shown that the stochastic model has a quasi-stationary distribution with mean close to the stable equilibrium, provided the population size is sufficiently large. For small values of the population size, complete extinction can be observed in the simulations. However, the persistence time increases rapidly with the population size. This author received partial support by the National Science Foundation grant # DMS-9626417.  相似文献   

8.
For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we determine the phase transition lines using pair approximation for the moments derived from the master equation. We introduce a scaling argument that allows us to determine analytically an explicit formula for these phase transition lines and prove rigorously the heuristic results obtained previously.  相似文献   

9.
Network epidemic models with two levels of mixing   总被引:1,自引:0,他引:1  
The study of epidemics on social networks has attracted considerable attention recently. In this paper, we consider a stochastic SIR (susceptible-->infective-->removed) model for the spread of an epidemic on a finite network, having an arbitrary but specified degree distribution, in which individuals also make casual contacts, i.e. with people chosen uniformly from the population. The behaviour of the model as the network size tends to infinity is investigated. In particular, the basic reproduction number R(0), that governs whether or not an epidemic with few initial infectives can become established is determined, as are the probability that an epidemic becomes established and the proportion of the population who are ultimately infected by such an epidemic. For the case when the infectious period is constant and all individuals in the network have the same degree, the asymptotic variance and a central limit theorem for the size of an epidemic that becomes established are obtained. Letting the rate at which individuals make casual contacts decrease to zero yields, heuristically, corresponding results for the model without casual contacts, i.e. for the standard SIR network epidemic model. A deterministic model that approximates the spread of an epidemic that becomes established in a large population is also derived. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations work well, even for only moderately sized networks, and that the degree distribution and the inclusion of casual contacts can each have a major impact on the outcome of an epidemic.  相似文献   

10.
Models for the spread of an SIS epidemic among a population consisting of m households, each containing n individuals, are considered and their behaviour is analysed under the practically relevant situation when m is large and n small. A threshold parameter R* is determined. For the stochastic model it is shown that the epidemic has a non-zero probability of taking off if and only if R* > 1, and the extension to unequal household sizes is also considered. For the deterministic model, with households of size 2, it is shown that if R* < or = 1 then the epidemic dies out, whilst if R* > 1 the epidemic settles down to an endemic equilibrium. The usual basic reproductive ratio R0 does not provide a good indicator for the behaviour of these household epidemic models unless the household size n is large.  相似文献   

11.
Host-parasite systems provide powerful opportunities for the study of spatial and stochastic effects in ecology; this has been particularly so for directly transmitted microparasites. Here, we construct a fully stochastic model of the population dynamics of a macroparasite system: trichostrongylid gastrointestinal nematode parasites of farmed ruminants. The model subsumes two implicit spatial effects: the host population size (the spatial extent of the interaction between hosts) and spatial heterogeneity ('clumping') in the infection process. This enables us to investigate the roles of several different processes in generating aggregated parasite distributions. The necessity for female worms to find a mate in order to reproduce leads to an Allee effect, which interacts nonlinearly with the stochastic population dynamics and leads to the counter-intuitive result that, when rare, epidemics can be more likely and more severe in small host populations. Clumping in the infection process reduces the strength of this Allee effect, but can hamper the spread of an epidemic by making infection events too rare. Heterogeneity in the hosts' response to infection has to be included in the model to generate aggregation at the level observed empirically.  相似文献   

12.
This paper considers the simplest stochastic model for the spread of an epidemic in a closed, homogeneously mixing population. Approximate methods are presented for calculating the probability distribution of the epidemic size (i.e. number of infected individuals). In fact, a functional central limit theorem and a large deviation principle for the epidemic size when the population increases are shown. These results enable us to both obtain a global approximation for the epidemic size and study asymptotic properties of other random variables depending on the complete history of the epidemic. As an application of our results, we derive two sequences of estimators for the contact rate and analyze their asymptotic behaviour.  相似文献   

13.
For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we determine the phase transition lines using pair approximation for the moments derived from the master equation. We introduce a scaling argument that allows us to determine analytically an explicit formula for these phase transition lines and prove rigorously the heuristic results obtained previously.  相似文献   

14.
Epidemic dynamics pose a great challenge to stochastic modelling because chance events are major determinants of the size and the timing of the outbreak. Reintroduction of the disease through contact with infected individuals from other areas is an important latent stochastic variable. In this study we model these stochastic processes to explain extinction and recurrence of epidemics observed in measles. We develop estimating functions for such a model and apply the methodology to temporal case counts of measles in 60 cities in England and Wales. In order to estimate the unobserved spatial contact process we suggest a method based on stochastic simulation and marginal densities. The estimation results show that it is possible to consider a unified model for the UK cities where the parameters depend on the city size. Stochastic realizations from the dynamic model realistically capture the transitions from an endemic cyclic pattern in large populations to irregular epidemic outbreaks in small human host populations.  相似文献   

15.
The processes by which disease spreads in a population of individuals are inherently stochastic. The master equation has proven to be a useful tool for modeling such processes. Unfortunately, solving the master equation analytically is possible only in limited cases (e.g., when the model is linear), and thus numerical procedures or approximation methods must be employed. Available approximation methods, such as the system size expansion method of van Kampen, may fail to provide reliable solutions, whereas current numerical approaches can induce appreciable computational cost. In this paper, we propose a new numerical technique for solving the master equation. Our method is based on a more informative stochastic process than the population process commonly used in the literature. By exploiting the structure of the master equation governing this process, we develop a novel technique for calculating the exact solution of the master equation--up to a desired precision--in certain models of stochastic epidemiology. We demonstrate the potential of our method by solving the master equation associated with the stochastic SIR epidemic model. MATLAB software that implements the methods discussed in this paper is freely available as Supporting Information S1.  相似文献   

16.
In this paper a two-state, two-component, Ising-type model is used to simulate the lateral distribution of the components and gel/fluid state acyl chains in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) lipid bilayers. The same model has been successful in calculating the excess heat capacity curves, the fluorescence recovery after photobleaching (FRAP) threshold temperatures, the most frequent center-to-center distances between DSPC clusters, and the fractal dimensions of gel clusters (Sugar, I. P., T. E. Thompson, and R. L. Biltonen, 1999. Biophys. J. 76:2099-2110). Depending on the temperature and mole fraction the population of the cluster size is either homogeneous or inhomogeneous. In the inhomogeneous population the size of the largest cluster scales with the size of the system, while the rest of the clusters remain small with increasing system size. In a homogeneous population, however, every cluster remains small with increasing system size. For both compositional and fluid/gel state clusters, threshold temperatures-the so-called percolation threshold temperatures-are determined where change in the type of the population takes place. At a given mole fraction, the number of percolation threshold temperatures can be 0, 1, 2, or 3. By plotting these percolation threshold temperatures on the temperature/mole fraction plane, the diagrams of component and state separation of DMPC/DSPC bilayers are constructed. In agreement with the small-angle neutron scattering measurements, the component separation diagram shows nonrandom lateral distribution of the components not only in the gel-fluid mixed phase region, but also in the pure gel and pure fluid regions. A combined diagram of component and state separation is constructed to characterize the lateral distribution of lipid components and gel/fluid state acyl chains in DMPC/DSPC mixtures. While theoretical phase diagrams of two component mixtures can be constructed only in the case of first-order transitions, state and component separation diagrams can be constructed whether or not the system is involved in first-order transition. The effects of interchain interactions on the component and state separation diagrams are demonstrated on three different models. The influences of state and component separation on the in-plane and off-plane membrane reactions are discussed.  相似文献   

17.
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population.  相似文献   

18.
Iwasa Y  Michor F  Nowak MA 《Genetics》2004,166(3):1571-1579
We study a situation that arises in the somatic evolution of cancer. Consider a finite population of replicating cells and a sequence of mutations: type 0 can mutate to type 1, which can mutate to type 2. There is no back mutation. We start with a homogeneous population of type 0. Mutants of type 1 emerge and either become extinct or reach fixation. In both cases, they can generate type 2, which also can become extinct or reach fixation. If mutation rates are small compared to the inverse of the population size, then the stochastic dynamics can be described by transitions between homogeneous populations. A "stochastic tunnel" arises, when the population moves from all 0 to all 2 without ever being all 1. We calculate the exact rate of stochastic tunneling for the case when type 1 is as fit as type 0 or less fit. Type 2 has the highest fitness. We discuss implications for the elimination of tumor suppressor genes and the activation of genetic instability. Although our theory is developed for cancer genetics, stochastic tunnels are general phenomena that could arise in many circumstances.  相似文献   

19.
20.
 In this paper, known results on optimal intervention policies for the general stochastic epidemic model are extended to epidemic models with more general infection and removal rate functions. We consider first policies allowing for the isolation of any number of infectives from the susceptible population at any time, secondly policies allowing for the immunisation of the entire susceptible population at any time, and finally policies allowing for either of these interventions. In each case the costs of infection, isolation and immunisation are assumed to have a particular, rather simple, form. Sufficient conditions are given on the infection and removal rate functions of the model for the optimal policies to take the same simple form as in the case of the general stochastic epidemic model. More general costs are briefly discussed, and some numerical examples given. Finally, we discuss possible directions for further work. Received: 16 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号