首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein liquid-liquid phase separation drives the dynamic assembly of membraneless organelles for fulfilling different physiological functions. Under diseased condition, protein may undergo liquid-to-solid condensation to form pathological amyloid aggregates closely associated with neurodegenerative diseases. Chemical probe serves as an important chemical tool not only for exploring the basic principle of the dynamic assembly of different protein condensates in vitro and in cell but also for clinical diagnosis and therapeutics of the related diseases. In this review, we first introduce chemical probes to image and regulate protein condensates. Then, we summarized three different categories of chemical probes including general amyloid dye, selective positron emission tomography tracer, and disaggregating binder, which feature distinct interaction pattern and activity upon binding to different pathological amyloid fibrillar aggregates. Next, we discuss the development of chemical probes for tracking protein amorphous aggregates in cells. Finally, we point out future direction in expanding the probes’ chemical space and applications.  相似文献   

2.
The detailed understanding of the structure of biological macromolecules reveals their functions, and is thus important in the design of new medicines and for engineering molecules with improved properties for industrial applications. Although techniques used for protein crystallization have been progressing greatly, protein crystallization may still be considered an art rather than a science, and successful crystallization remains largely empirical and operator-dependent. In this work, a microcalorimetric technique has been utilized to investigate liquid-liquid phase separation through measuring cloud-point temperature T(cloud) for supersaturated lysozyme solution. The effects of ionic strength and glycerol on the cloud-point temperature are studied in detail. Over the entire range of salt concentrations studied, the cloud-point temperature increases monotonically with the concentration of sodium chloride. When glycerol is added as additive, the solubility of lysozyme is increased, whereas the cloud-point temperature is decreased.  相似文献   

3.
4.
Monoclonal antibody therapeutics is an important and fast expanding market. While production of these molecules has been a major area of research, much less is known regarding the stabilization of these proteins for delivery as drugs. Crystallization of antibodies is one such promising route for protein stabilization at high titers, and here we took a systematic approach to initiate crystallization through nucleation in a simple PEG (polyethylene glycol), protein in water solution. A ternary mixture of globular proteins, PEG, and water will undergo a liquid-liquid phase separation (LLPS) as shown in a phase diagram or a Binodal curve. Of particular interest within the phase diagram is the position of the critical point, which is where nucleation occurs most rapidly. Detailed LLPS maps were created by increasing concentrations of PEG (from 5% to 11%) and IgG (from 1 to 20 mg/mL). By increasing the molecular weight (MW) of PEG (and hence its radius of gyration) from 1,000 to 6,000 g/mol, the temperatures of the critical point of nucleation were shown to increase. Once these curves were determined, nucleation experiments were conducted close to a chosen critical point (10.5 mg/mL IgG in 11% PEG 1000) and after 3 weeks, crystals of IgG of approximately 100 microm in size were successfully formed. This is the first example of crystallization of an antibody through systematic mapping of LLPS curves, which is a fundamental step towards the scale-up of antibody crystallization.  相似文献   

5.
《Molecular cell》2022,82(16):3015-3029.e6
  1. Download : Download high-res image (261KB)
  2. Download : Download full-size image
  相似文献   

6.
基于CRISPR/Cas9系统的基因组编辑技术已成为基因功能研究和遗传修饰的重要工具。在引导RNA的引导下,Cas9蛋白对基因组靶位点进行精准切割产生DNA双链断裂(DSB),借助细胞内的DSB修复机制,可实现基因组靶位点碱基的缺失、插入或者替换,甚至发生片段删除。该文介绍了基于CRISPR/Cas9基因组编辑系统的D...  相似文献   

7.
The aggregates and gels commonly observed during protein crystallization have generally been considered disordered phases without further characterization. Here their physical nature is addressed by investigating protein salting-out in ammonium sulfate and sodium chloride for six proteins (ovalbumin, ribonuclease A, soybean trypsin inhibitor, lysozyme, and β-lactoglobulin A and B) at 4°C, 23°C, and 37°C. When interpreted within the framework of a theoretical phase diagram obtained for colloidal particles displaying short-range attractive interactions, the results show that the formation of aggregates can be interpreted theoretically in terms of a gas-liquid phase separation for aggregates that are amorphous or gel-like. A notable additional feature is the existence of a second aggregation line observed for both ovalbumin and ribonuclease A in ammonium sulfate, interpreted theoretically as the spinodal. Further investigation of ovalbumin and lysozyme reveals that the formation of aggregates can be interpreted, in light of theoretical results from mode-coupling theory, as a kinetically trapped state or a gel phase that occurs through the intermediate of a gas-liquid phase separation. Despite the limitations of simple theoretical models of short-range attractive interactions, such as their inability to reproduce the effect of temperature, they provide a framework useful to describe the main features of protein phase behavior.  相似文献   

8.
It is important to develop small moelcule-based methods to modulate gene editing and expression in human cells. The roles of the G-quadruplex (G4) in biological systems have been widely studied. Here, G4-guided RNA engineering is performed to generate guide RNA with G4-forming units (G4-gRNA). We further demonstrate that chemical targeting of G4-gRNAs holds promise as a general approach for modulating gene editing and expression in human cells. The rich structural diversity of RNAs offers a reservoir of targets for small molecules to bind, thus creating the potential to modulate RNA biology.  相似文献   

9.
《Biophysical journal》2022,121(22):4382-4393
Liquid-liquid phase separation (LLPS) has received considerable attention in recent years for explaining the formation of cellular biomolecular condensates. The fluidity and the complexity of their components make molecular simulation approaches indispensable for gaining structural insights. Domain-resolution mesoscopic model simulations have been explored for cases in which condensates are formed by multivalent proteins with tandem domains. One problem with this approach is that interdomain pairwise interactions cannot regulate the valency of the binding domains. To overcome this problem, we propose a new potential, the stoichiometric interaction (SI) potential. First, we verified that the SI potential maintained the valency of the interacting domains for the test systems. We then examined a well-studied LLPS model system containing tandem repeats of SH3 domains and proline-rich motifs. We found that the SI potential alone cannot reproduce the phase diagram of LLPS quantitatively. We had to combine the SI and a pairwise interaction; the former and the latter represent the specific and nonspecific interactions, respectively. Biomolecular condensates with the mixed SI and pairwise interaction exhibited fluidity, whereas those with the pairwise interaction alone showed no detectable diffusion. We also compared the phase diagrams of the systems containing different numbers of tandem domains with those obtained from the experiments and found quantitative agreement in all but one case.  相似文献   

10.
《Cell reports》2023,42(7):112700
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
14.
A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics.  相似文献   

15.
Research about the kinetoplast of trypanosomatids has yielded valuable information about the organization of extranuclear structure. However, the ultrastructural localization of nucleic acids within these protozoa remains uncertain. We have applied cytochemical and immunocytochemical approaches to precisely identify DNA and RNA in lower endosymbiont-bearing trypanosomatids. Using the Terminal deoxynucleotidyl Transferase (TdT) immunogold technique, we showed that nuclear DNA is seen associated with the nuclear envelope during the trypanosomatid cell cycle. By combining the TdT technique with the acetylation method, which improves the contrast between structures containing fibrils and granules, we have demonstrated that the nucleolus of endosymbiont-bearing trypanosomatids is composed of two constituents: a granular component and a DNA-positive fibrillar zone. Moreover, we revealed that DNA of endosymbiotic bacteria consisted of electron-dense filaments which are usually in close contact with the prokaryote envelope. Using a Lowicryl post-embedding immunogold labeling procedure with anti-RNA antibodies, we showed the presence of RNA not only over the cytoplasm, the interchromatin spaces and the nucleolus, but also over the kinetoplast and virus-like particles present in Crithidia desouzai.  相似文献   

16.
  相似文献   

17.
We report a case study in which liquid-liquid phase separation (LLPS) negatively impacted the downstream manufacturability of a therapeutic mAb. Process parameter optimization partially mitigated the LLPS, but limitations remained for large-scale manufacturing. Electrostatic interaction driven self-associations and the resulting formation of high-order complexes are established critical properties that led to LLPS. Through chain swapping substitutions with a well-behaved antibody and subsequent study of their solution behaviors, we found the self-association interactions between the light chains (LCs) of this mAb are responsible for the LLPS behavior. With the aid of in silico homology modeling and charged-patch analysis, seven charged residues in the LC complementarity-determining regions (CDRs) were selected for mutagenesis, then evaluated for self-association and LLPS properties. Two charged residues in the light chain (K30 and D50) were identified as the most significant to the LLPS behaviors and to the antigen-binding affinity. Four adjacent charged residues in the light chain (E49, K52, R53, and R92) also contributed to self-association, and thus to LLPS. Molecular engineering substitution of these charged residues with a neutral or oppositely-charged residue disrupted the electrostatic interactions. A double-mutation in CDR2 and CDR3 resulted in a variant that retained antigen-binding affinity and eliminated LLPS. This study demonstrates the critical nature of surface charged resides on LLPS, and highlights the applied power of in silico protein design when applied to improving physiochemical characteristics of therapeutic antibodies. Our study indicates that in silico design and effective protein engineering may be useful in the development of mAbs that encounter similar LLPS issues.  相似文献   

18.
19.
《Molecular cell》2022,82(14):2588-2603.e9
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号