首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EB1 is a conserved protein that plays a central role in regulating microtubule dynamics and organization. It binds directly to microtubule plus ends and recruits other plus end–localizing proteins. Most EB1-binding proteins contain a Ser–any residue–Ile-Pro (SxIP) motif. Here we describe the isolation of peptide aptamers with optimized versions of this motif by screening for interaction with the Drosophila EB1 protein. The use of small peptide aptamers to competitively inhibit protein interaction and function is becoming increasingly recognized as a powerful technique. We show that SxIP aptamers can bind microtubule plus ends in cells and functionally act to displace interacting proteins by competitive binding. Their expression in developing flies can interfere with microtubules, altering their dynamics. We also identify aptamers binding to human EB1 and EB3, which have sequence requirements similar to but distinct from each other and from Drosophila EB1. This suggests that EB1 paralogues within one species may interact with overlapping but distinct sets of proteins in cells.  相似文献   

2.
EB1 family proteins are evolutionarily conserved proteins that bind microtubule plus-ends and centrosomes and regulate the dynamics and organization of microtubules. Human EB1 family proteins, which include EB1, EBF3, and RP1, also associate with the tumor suppressor protein adenomatous polyposis coli (APC) and p150glued, a component of the dynactin complex. The structural basis for interaction between human EB1 family proteins and their associated proteins has not been defined in detail. EB1 family proteins have a calponin homology (CH) domain at their N terminus and an EB1-like C-terminal motif at their C terminus; the functional importance of these domains has not been determined. To better understand functions of human EB1 family proteins and to reveal functional similarities and differences among these proteins, we performed detailed characterizations of interactions between human EB1 family proteins and their associated proteins. We show that amino acids 1-133 of EB1 and EBF3 and the corresponding region of RP1, which contain a CH domain, are necessary and sufficient for binding microtubules, thus demonstrating for the first time that a CH domain contributes to binding microtubules. EB1 family proteins use overlapping but different regions that contain the EB1-like C-terminal motif to associate with APC and p150glued. Neither APC nor p150glued binding domain is necessary for EB1 or EBF3 to induce microtubule bundling, which requires amino acids 1-181 and 1-185 of EB1 and EBF3, respectively. We also determined that the EB1 family protein-binding regions are amino acids 2781-2820 and 18-111 of APC and p150glued, respectively.  相似文献   

3.
EBs and CLIPs are evolutionarily conserved proteins, which associate with the tips of growing microtubules, and regulate microtubule dynamics and their interactions with intracellular structures. In this study we investigated the functional relationship of CLIP-170 and CLIP-115 with the three EB family members, EB1, EB2(RP1), and EB3 in mammalian cells. We showed that both CLIPs bind to EB proteins directly. The C-terminal tyrosine residue of EB proteins is important for this interaction. When EB1 and EB3 or all three EBs were significantly depleted using RNA interference, CLIPs accumulated at the MT tips at a reduced level, because CLIP dissociation from the tips was accelerated. Normal CLIP localization was restored by expression of EB1 but not of EB2. An EB1 mutant lacking the C-terminal tail could also fully rescue CLIP dissociation kinetics, but could only partially restore CLIP accumulation at the tips, suggesting that the interaction of CLIPs with the EB tails contributes to CLIP localization. When EB1 was distributed evenly along the microtubules because of overexpression, it slowed down CLIP dissociation but did not abolish its preferential plus-end localization, indicating that CLIPs possess an intrinsic affinity for growing microtubule ends, which is enhanced by an interaction with the EBs.  相似文献   

4.
End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Furthermore, we demonstrated in vitro and in cells that the EB plus-end tracking behavior depends on the calponin homology domain but does not require dimer formation. In contrast, dimerization is necessary for the EB anti-catastrophe activity in cells; this explains why the EB1 dimerization domain, which disrupts native EB dimers, exhibits a dominant-negative effect. When microtubule dynamics is reconstituted with purified tubulin, EBs promote rather than inhibit catastrophes, suggesting that in cells EBs prevent catastrophes by counteracting other microtubule regulators. This probably occurs through their action on microtubule ends, because catastrophe suppression does not require the EB domains needed for binding to known EB partners.  相似文献   

5.
End-binding proteins (EBs) comprise a conserved family of microtubule plus end-tracking proteins. The concerted action of calponin homology (CH), linker, and C-terminal domains of EBs is important for their autonomous microtubule tip tracking, regulation of microtubule dynamics, and recruitment of numerous partners to microtubule ends. Here we report the detailed structural and biochemical analysis of mammalian EBs. Small-angle X-ray scattering, electron microscopy, and chemical cross-linking in combination with mass spectrometry indicate that EBs are elongated molecules with two interacting CH domains, an arrangement reminiscent of that seen in other microtubule- and actin-binding proteins. Removal of the negatively charged C-terminal tail did not affect the overall conformation of EBs; however, it increased the dwell times of EBs on the microtubule lattice in microtubule tip-tracking reconstitution experiments. An even more stable association with the microtubule lattice was observed when the entire negatively charged C-terminal domain of EBs was replaced by a neutral coiled-coil motif. In contrast, the interaction of EBs with growing microtubule tips was not significantly affected by these C-terminal domain mutations. Our data indicate that long-range electrostatic repulsive interactions between the C-terminus and the microtubule lattice drive the specificity of EBs for growing microtubule ends.  相似文献   

6.
A group of diverse proteins reversibly binds to growing microtubule plus ends through interactions with end-binding proteins (EBs). These +TIPs control microtubule dynamics and microtubule interactions with other intracellular structures. Here, we use cytoplasmic linker-associated protein 2 (CLASP2) binding to EB1 to determine how multisite phosphorylation regulates interactions with EB1. The central, intrinsically disordered region of vertebrate CLASP proteins contains two SXIP EB1 binding motifs that are required for EB1-mediated plus-end-tracking in vitro. In cells, both EB1 binding motifs can be functional, but most of the binding free energy results from nearby electrostatic interactions. By employing molecular dynamics simulations of the EB1 interaction with a minimal CLASP2 plus-end-tracking module, we find that conserved arginine residues in CLASP2 form extensive hydrogen-bond networks with glutamate residues predominantly in the unstructured, acidic C-terminal tail of EB1. Multisite phosphorylation of glycogen synthase kinase 3 (GSK3) sites near the EB1 binding motifs disrupts this electrostatic "molecular Velcro." Molecular dynamics simulations and (31)P NMR spectroscopy indicate that phosphorylated serines participate in intramolecular interactions with and sequester arginine residues required for EB1 binding. Multisite phosphorylation of these GSK3 motifs requires priming phosphorylation by interphase or mitotic cyclin-dependent kinases (CDKs), and we find that CDK- and GSK3-dependent phosphorylation completely disrupts CLASP2 microtubule plus-end-tracking in mitosis.  相似文献   

7.
Plus end tracking proteins (+TIPs) are a unique group of microtubule binding proteins that dynamically track microtubule (MT) plus ends. EB1 is a highly conserved +TIP with a fundamental role in MT dynamics, but it remains poorly understood in part because reported EB1 activities have differed considerably. One reason for this inconsistency could be the variable presence of affinity tags used for EB1 purification. To address this question and establish the activity of native EB1, we have measured the MT binding and tubulin polymerization activities of untagged EB1 and EB1 fragments and compared them with those of His-tagged EB1 proteins. We found that N-terminal His tags directly influence the interaction between EB1 and MTs, significantly increasing both affinity and activity, and that small amounts of His-tagged proteins act synergistically with larger amounts of untagged proteins. Moreover, the binding ratio between EB1 and tubulin can exceed 1:1, and EB1-MT binding curves do not fit simple binding models. These observations demonstrate that EB1 binding is not limited to the MT seam, and they suggest that EB1 binds cooperatively to MTs. Finally, we found that removal of tubulin C-terminal tails significantly reduces EB1 binding, indicating that EB1-tubulin interactions are mediated in part by the same tubulin acidic tails utilized by other MAPs. These binding relationships are important for helping to elucidate the complex of proteins at the MT tip.  相似文献   

8.
EB1 proteins bind to microtubule ends where they act in concert with other components, including the adenomatous polyposis coli (APC) tumor suppressor, to regulate the microtubule filament system. We find that EB1 is a stable dimer with a parallel coiled coil and show that dimerization is essential for the formation of its C-terminal domain (EB1-C). The crystal structure of EB1-C reveals a highly conserved surface patch with a deep hydrophobic cavity at its center. EB1-C binds two copies of an APC-derived C-terminal peptide (C-APCp1) with equal 5 microM affinity. The conserved APC Ile2805-Pro2806 sequence motif serves as an anchor for the interaction of C-APCp1 with the hydrophobic cavity of EB1-C. Phosphorylation of the conserved Cdc2 site Ser2789-Lys2792 in C-APCp1 reduces binding four-fold, indicating that the interaction APC-EB1 is post-translationally regulated in cells. Our findings provide a basis for understanding the dynamic crosstalk of EB1 proteins with their molecular targets in eukaryotic organisms.  相似文献   

9.
《Journal of molecular biology》2019,431(10):1993-2005
End-binding proteins (EBs), referred to as the core components of the microtubule plus-end tracking protein network, interact with the C-terminus of the adenomatous polyposis coli (APC) tumor suppressor. This interaction is disrupted in colon cancers expressing truncated APC. APC and EBs act in synergy to regulate microtubule dynamics during spindle formation, chromosome segregation and cell migration. Since EBs autonomously end-track microtubules and partially co-localize with APC at microtubule tips in cells, EBs have been proposed to direct APC to microtubule ends. However, the interdependency of EB and APC localization on microtubules remains elusive. Here, using in vitro reconstitution and single-molecule imaging, we have investigated the interplay between EBs and the C-terminal domain of APC (APC-C) on dynamic microtubules. Our results show that APC-C binds along the microtubule wall but does not accumulate at microtubule tips, even when EB proteins are present. APC-C was also found to enhance EB binding at the extremity of growing microtubules and on the microtubule lattice: APC-C promotes EB end-tracking properties by increasing the time EBs spend at microtubule growing ends, whereas a pool of EBs with a fast turnover accumulates along the microtubule surface. Overall, our results suggest that APC is a promoter of EB interaction with microtubules, providing molecular determinants to reassess the relationship between APC and EBs.  相似文献   

10.
Microtubule dynamics is regulated by an array of microtubule associated proteins of which the microtubule plus-end tracking proteins (+TIPs) are prominent examples. +TIPs form dynamic interaction networks at growing microtubule ends in an EB1-dependent manner. The interaction between the C-terminal domain of EB1 and the CAP-Gly domains of the +TIP CLIP-170 depends on the last tyrosine residue of EB1. In the present study, we generated peptidic probes corresponding to the C-terminal tail of EB1 to affinity-capture binding partners from cell lysates. Using an MS-based approach, we showed that the last 15 amino-acid residues of EB1, either free or immobilized on beads, bound recombinant CAP-Gly domains of CLIP-170. We further demonstrate that this binding was prevented when the C-terminal tyrosine of EB1 was absent in the peptidic probes. Western blotting in combination with a label-free quantitative proteomic analysis revealed that the peptidic probe harboring the C-terminal tyrosine of EB1 effectively pulled-down proteins with CAP-Gly domains from endothelial cell extracts. Additional proteins known to interact directly or indirectly with EB1 and the microtubule cytoskeleton were also identified. Our peptidic probes represent valuable tools to detect changes induced in EB1-dependent +TIP networks by external cues such as growth factors and small molecules.  相似文献   

11.
The end-binding protein 1 (EB1) family is a highly conserved group of proteins that localizes to the plus-ends of microtubules. EB1 has been shown to play an important role in regulating microtubule dynamics and chromosome segregation, but its regulation mechanism is poorly understood. We have determined the 1.45-A resolution crystal structure of the amino-terminal domain of EB1, which is essential for microtubule binding, and show that it forms a calponin homology (CH) domain fold that is found in many proteins involved in the actin cytoskeleton. The functional CH domain for actin binding is a tandem pair, whereas EB1 is the first example of a single CH domain that can associate with the microtubule filament. Although our biochemical study shows that microtubule binding of EB1 is electrostatic in part, our mutational analysis suggests that the hydrophobic network, which is partially exposed in our crystal structure, is also important for the association. We propose that, like other actin-binding CH domains, EB1 employs the hydrophobic interaction to bind to microtubules.  相似文献   

12.
MAP1B, a structural microtubule (MT)‐associated protein highly expressed in developing neurons, plays a key role in neurite and axon extension. However, not all molecular mechanisms by which MAP1B controls MT dynamics during these processes have been revealed. Here, we show that MAP1B interacts directly with EB1 and EB3 (EBs), two core ‘microtubule plus‐end tracking proteins’ (+TIPs), and sequesters them in the cytosol of developing neuronal cells. MAP1B overexpression reduces EBs binding to plus‐ends, whereas MAP1B downregulation increases binding of EBs to MTs. These alterations in EBs behaviour lead to changes in MT dynamics, in particular overstabilization and looping, in growth cones of MAP1B‐deficient neurons. This contributes to growth cone remodelling and a delay in axon outgrowth. Together, our findings define a new and crucial role of MAP1B as a direct regulator of EBs function and MT dynamics during neurite and axon extension. Our data provide a new layer of MT regulation: a classical MAP, which binds to the MT lattice and not to the end, controls effective concentration of core +TIPs thereby regulating MTs at their plus‐ends.  相似文献   

13.
Microtubules and their associated proteins play important roles in vesicle and organelle transport, cell motility and cell division. Perturbation of these processes by mutation typically gives rise to severe pathological conditions. In our efforts to obtain atomic information on microtubule-associated protein/microtubule interactions with the goal to understand mechanisms that might potentially assist in the development of treatments for these diseases, we have determined the three-dimensional structure of CAP-Gly (cytoskeleton-associated protein, glycine-rich) domain of mammalian dynactin by magic angle spinning NMR spectroscopy. We observe two conformations in the β2 strand encompassing residues T43-V44-A45, residues that are adjacent to the disease-associated mutation, G59S. Upon binding of CAP-Gly to microtubule plus-end tracking protein EB1, the CAP-Gly shifts to a single conformer. We find extensive chemical shift perturbations in several stretches of residues of CAP-Gly upon binding to EB1, from which we define accurately the CAP-Gly/EB1 binding interface. We also observe that the loop regions may exhibit unique flexibility, especially in the GKNDG motif, which participates in the microtubule binding. This study in conjunction with our previous reports suggests that conformational plasticity is an intrinsic property of CAP-Gly likely due to its unusually high loop content and may be required for its biological functions.  相似文献   

14.
iASPP is a protein mostly known as an inhibitor of p53 pro-apoptotic activity and a predicted regulatory subunit of the PP1 phosphatase, which is often overexpressed in tumors. We report that iASPP associates with the microtubule plus-end binding protein EB1, a central regulator of microtubule dynamics, via an SxIP motif. iASPP silencing or mutation of the SxIP motif led to defective microtubule capture at the cortex of mitotic cells, leading to abnormal positioning of the mitotic spindle. These effects were recapitulated by the knockdown of the membrane-to-cortex linker Myosin-Ic (Myo1c), which we identified as a novel partner of iASPP. Moreover, iASPP or Myo1c knockdown cells failed to round up upon mitosis because of defective cortical stiffness. We propose that by increasing cortical rigidity, iASPP helps cancer cells maintain a spherical geometry suitable for proper mitotic spindle positioning and chromosome partitioning.  相似文献   

15.
Nakamura M  Zhou XZ  Lu KP 《Current biology : CB》2001,11(13):1062-1067
Human EB1 was originally cloned as a protein that interacts with the COOH terminus of adenomatous polyposis coli (APC). Interestingly, this interaction is often disrupted in colon cancer, due to mutations in APC. EB1 also interacts with the plus-ends of microtubules and targets APC to microtubule tips. Since APC is detected on the kinetochores of chromosomes, it has been hypothesized that the EB1-APC interaction connects microtubule spindles to the kinetochores and regulates microtubule stability. In yeast, EB1 regulates microtubule dynamics, and its binding domain in APC may be conserved in Kar9, an EB1 binding protein involved in the microtubule-capturing mechanism. These results suggest that the interaction of EB1 and APC is important and may be conserved. However, it is largely unknown whether the EB1-APC interaction affects microtubule dynamics. Here, we show that EB1 potently promotes microtubule polymerization in vitro and in permeabilized cells, but, surprisingly, only in the presence of the COOH-terminal EB1 binding domain of APC (C-APC). Significantly, this C-APC activity is abolished by phosphorylation, which also disrupts its ability to bind to EB1. Furthermore, yeast EB1 protein effectively substitutes for the human protein but also requires C-APC in promoting microtubule polymerization. Finally, C-APC is able to promote microtubule polymerization when stably expressed in APC mutant cells, demonstrating the ability of C-APC to promote microtubule assembly in vivo. Thus, the interaction between EB1 and APC plays an essential role in the regulation of microtubule polymerization, and a similar mechanism may be conserved in yeast.  相似文献   

16.
Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2–EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2–EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics.  相似文献   

17.
The EB1+TIP protein family and its binding partners track growing plus ends of microtubules in cells and are thought to regulate their dynamics. Here we determined the effects of EB1 and the N-terminal CAP-Gly domain (p150n) of one of its major binding partners, p150Glued, both separately and together, on the dynamic instability parameters at plus ends of purified steady-state microtubules. With EB1 alone, the shortening rate, the extent of shortening, and the catastrophe frequency were suppressed in the absence of significant effects on the growth rate or rescue frequency. The effects of EB1 on dynamics were significantly different when p150n was added together with EB1. The rate and extent of shortening and the catastrophe frequency were suppressed 3-4 times more strongly than with EB1 alone. In addition, the EB1-p150n complex increased the rescue frequency and the mean length the microtubules grew, parameters that were not significantly affected by EB1 alone. Similarly, deletion of EB1's C-terminal tail, which is a crucial binding region for p150n, significantly increased the ability of EB1 to suppress shortening dynamics. EB1 by itself bound along the length of the microtubules with 1 mol of EB1 dimer bound per approximately 12 mol of tubulin dimer. Approximately twice the amount of EB1 was recruited to the microtubules in the presence of p150n. Our results indicate that inactivation of EB1's flexible C-terminal tail significantly changes EB1's ability to modulate microtubule dynamics. They further suggest that p150Glued may activate and thereby facilitate the recruitment of EB1 to the tips of microtubules to regulate their dynamics.  相似文献   

18.
CLIP-170 is a "cytoplasmic linker protein" implicated in endosome-microtubule interactions and in control of microtubule dynamics. CLIP-170 localizes dynamically to growing microtubule plus ends, colocalizing with the dynein activator dynactin and the APC-binding protein EB1. This shared "plus-end tracking" behavior suggests that CLIP-170 might interact with dynactin and/or EB1. We have used site-specific mutagenesis of CLIP-170 and a transfection/colocalization assay to address this question in mammalian tissue culture cells. Our results indicate that CLIP-170 interacts, directly or indirectly, with both dynactin and EB1. We find that the CLIP-170/dynactin interaction is mediated by the second metal binding motif of the CLIP-170 tail. In contrast, the CLIP-170/EB1 interaction requires neither metal binding motif. In addition, our experiments suggest that the CLIP-170/dynactin interaction occurs via the shoulder/sidearm subcomplex of dynactin and can occur in the cytosol (i.e., it does not require microtubule binding). These results have implications for the targeting of both dynactin and EB1 to microtubule plus ends. Our data suggest that the CLIP-170/dynactin interaction can target dynactin complex to microtubule plus ends, although dynactin likely also targets MT plus ends directly via the microtubule binding motif of the p150(Glued) subunit. We find that CLIP-170 mutants alter p150(Glued) localization without affecting EB1, indicating that EB1 can target microtubule plus ends independently of dynactin.  相似文献   

19.
End binding proteins (EBs) track growing microtubule ends and play a master role in organizing dynamic protein networks. Mammalian cells express up to three different EBs (EB1, EB2, and EB3). Besides forming homodimers, EB1 and EB3 also assemble into heterodimers. One group of EB-binding partners encompasses proteins that harbor CAP-Gly domains. The binding properties of the different EBs towards CAP-Gly proteins have not been systematically investigated. This information is, however, important to compare and contrast functional differences. Here we analyzed the interactions between CLIP-170 and p150(glued) CAP-Gly domains with the three EB homodimers and the EB1-EB3 heterodimer. Using isothermal titration calorimetry we observed that some EBs bind to the individual CAP-Gly domains with similar affinities while others interact with their targets with pronounced differences. We further found that the two types of CAP-Gly domains use alternative mechanisms to target the C-terminal domains of EBs. We succeeded to solve the crystal structure of a complex composed of a heterodimer of EB1 and EB3 C-termini together with the CAP-Gly domain of p150(glued). Together, our results provide mechanistic insights into the interaction properties of EBs and offer a molecular framework for the systematic investigation of their functional differences in cells.  相似文献   

20.
EB1 is a member of a conserved protein family that localizes to growing microtubule plus ends. EB1 proteins also recruit cell polarity and signaling molecules to microtubule tips. However, the mechanism by which EB1 recognizes cargo is unknown. Here, we have defined a repeat sequence in adenomatous polyposis coli (APC) that binds to EB1's COOH-terminal domain and identified a similar sequence in members of the microtubule actin cross-linking factor (MACF) family of spectraplakins. We show that MACFs directly bind EB1 and exhibit EB1-dependent plus end tracking in vivo. To understand how EB1 recognizes APC and MACFs, we solved the crystal structure of the EB1 COOH-terminal domain. The structure reveals a novel homodimeric fold comprised of a coiled coil and four-helix bundle motif. Mutational analysis reveals that the cargo binding site for MACFs maps to a cluster of conserved residues at the junction between the coiled coil and four-helix bundle. These results provide a structural understanding of how EB1 binds two regulators of microtubule-based cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号