首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human islet amyloid polypeptide (hIAPP), which is considered the primary culprit for β-cell loss in type 2 diabetes mellitus patients, is synthesized in β-cells of the pancreas from its precursor pro-islet amyloid polypeptide (proIAPP), which may be important in early intracellular amyloid formation as well. We compare the amyloidogenic propensities and conformational properties of proIAPP and hIAPP in the presence of negatively charged lipid membranes, which have been discussed as loci of initiation of the fibrillation reaction. Circular dichroism studies verify the initial secondary structures of proIAPP and hIAPP to be predominantly unordered with small amounts of ordered secondary structure elements, and exhibit minor differences between these two peptides only. Using attenuated total reflection-Fourier transform infrared spectroscopy and thioflavin T fluorescence spectroscopy, as well as atomic force microscopy, we show that in the presence of negatively charged membranes, proIAPP exhibits a much higher amyloidogenic propensity than in bulk solvent. Compared to hIAPP, it is still much less amyloidogenic, however. Although differences in the secondary structures of the aggregated species of hIAPP and proIAPP at the lipid interface are small, they are reflected in morphological changes. Unlike hIAPP, proIAPP forms essentially oligomeric-like structures at the lipid interface. Besides the interaction with anionic membranes [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) + x1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]], interaction with zwitterionic homogeneous (DOPC) and heterogeneous (1,2-dipalmitoyl-sn-glycero-3-phosphocholine:DOPC:cholesterol 1:2:1 model raft mixture) membranes has also been studied. Both peptides do not aggregate significantly at DOPC bilayers. In the presence of the model raft membrane, hIAPP aggregates markedly as well. Conversely, proIAPP clusters into less ordered structures and to a minor extent at raft membranes only. The addition of proIAPP to hIAPP retards the hIAPP fibrillation process also in the presence of negatively charged lipid bilayers. In excess proIAPP, increased aggregation levels are finally observed, however, which could be attributed to seed-induced cofibrillation of proIAPP.  相似文献   

2.
We used wide angle x-ray scattering (WAXS) from stacks of oriented lipid bilayers to measure chain orientational order parameters and lipid areas in model membranes consisting of mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol in fluid phases. The addition of 40% cholesterol to either DOPC or DPPC changes the WAXS pattern due to an increase in acyl chain orientational order, which is one of the main properties distinguishing the cholesterol-rich liquid-ordered (Lo) phase from the liquid-disordered (Ld) phase. In contrast, powder x-ray data from multilamellar vesicles does not yield information about orientational order, and the scattering from the Lo and Ld phases looks similar. An analytical model to describe the relationship between the chain orientational distribution and WAXS data was used to obtain an average orientational order parameter, Sx-ray. When 40% cholesterol is added to either DOPC or DPPC, Sx-ray more than doubles, consistent with previous NMR order parameter measurements. By combining information about the average chain orientation with the chain-chain correlation spacing, we extended a commonly used method for calculating areas for gel-phase lipids to fluid-phase lipids and obtained agreement to within 5% of literature values.  相似文献   

3.
《Biophysical journal》2020,118(8):1830-1837
Laurdan fluorescence, novel spectral fitting, and dynamic light scattering were combined to determine lateral lipid organization in mixed lipid membranes of the oxidized lipid, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC), and each of the three bilayer lipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). Second harmonic spectra were computed to determine the number of elementary emissions present. All mixtures indicated two emissions. Accordingly, spectra were fit to two log-normal distributions. Changes with PGPC mole fraction, XPGPC, of the area of the shorter wavelength line and of dynamic light scattering-derived aggregate sizes show that: DPPC and PGPC form component-separated mixed vesicles for XPGPC ≤ 0.2 and coexisting vesicles and micelles for XPGPC > 0.2 in gel and liquid-ordered phases and for all XPGPC in the liquid-disordered phase; POPC and PGPC form randomly mixed vesicles for XPGPC ≤ 0.2 and component-separated mixed vesicles for XPGPC > 0.2. DOPC and PGPC separate into vesicles and micelles. Component segregation is due to unstable inhomogeneous membrane curvature stemming from lipid-specific intrinsic curvature differences between mixing molecules. PGPC is inverse cone-shaped because its truncated tail with a terminal polar group points into the interface. It is similar to and mixes with POPC, also an inverse cone because of mobility of its unsaturated tail. PGPC is least similar to DOPC because mobilities of both unsaturated tails confer a cone shape to DOPC, and PGPC separates form DOPC. DPPC and PGPC do not mix in the liquid-disordered phase because mobility of both tails in this phase renders DPPC a cone. DPPC is a cylinder in the gel phase and of moderate similarity to PGPC and mixes moderately with PGPC.  相似文献   

4.
Cell membranes show complex behavior, in part because of the large number of different components that interact with each other in different ways. One aspect of this complex behavior is lateral organization of components on a range of spatial scales. We found that lipid-only mixtures can model the range of size scales, from approximately 2 nm up to microns. Furthermore, the size of compositional heterogeneities can be controlled entirely by lipid composition for mixtures such as 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol or sphingomyelin (SM)/DOPC/POPC/cholesterol. In one region of special interest, because of its connection to cell membrane rafts, nanometer-scale domains of liquid-disordered phase and liquid-ordered phase coexist over a wide range of compositions.  相似文献   

5.
The mixed Langmuir monolayers composed of model constituents of biological membranes, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were investigated to provide information on the intermolecular interactions between these membrane components and the physiologically active vitamin E–α-tocopherol (TF), as well as on the phase behavior of these mixed systems. Additionally, topography of these monolayers transferred onto the mica support was investigated by the inverted metallurgical microscope. Morphological characteristics were directly observed by Brewster angle microscopy (BAM). From the surface pressure–area isotherms and the analysis of physicochemical parameters (compressibility and mean molecular area at the maximum compressibility) it was found that depending on the acyl chains saturation degree, TF has different effect on the phospholipids. In the case of DPPC, the addition of TF to the phospholipid film causes destabilization of the ordered hydrocarbon chains, while in the POPC/DOPC–TF systems, the attractive interactions are responsible for the monolayer increased stability. Thus, the results of these studies confirm the hypothesis that α-tocopherol may play a role in the stabilization of biological membranes.  相似文献   

6.
Alkylphosphocholines (APCs) belong to a class of synthetic antitumor lipids, which are new-generation anticancer agents. In contrast to traditional antitumor drugs, they do not attack the cell nucleus but, rather, the cellular membrane; however, their mechanism of action is not fully understood. This work compared the interactions of selected APCs [namely, hexadecylphosphocholine (miltefosine), octadecylphosphocholine and erucylphosphocholine] with the most important membrane lipids [cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] and examined their influence on a model membrane of tumor and normal cells. As a simple model of membranes, Langmuir monolayers prepared by mixing cholesterol either with a saturated phosphatidylcholine (DPPC), for a normal cell membrane, or with an unsaturated one (POPC), for a tumor cell membrane, have been applied. The APC–lipid interactions, based on experimental surface pressure (π) versus mean molecular area (A) isotherms, were analyzed qualitatively (with mean molecular area values) as well as quantitatively (with the ΔG exc function). Strong attractive interactions were observed for mixtures of APCs with cholesterol, contrary to the investigated phosphatidylcholines, for which the interactions were found to be weak with a tendency to separation of film components. In ternary monolayers it has been found that the investigated model systems (cholesterol/DPPC/APC vs cholesterol/POPC/APC) differ significantly as regards the interactions between film-forming molecules. The results demonstrate stronger interactions between the components of cholesterol/POPC/APC monolayers compared to cholesterol/POPC film, mimicking tumor cell membranes. In contrast, the interactions in cholesterol/DPPC/APC films were found to be weaker than those in the cholesterol/DPPC system, serving as a model of healthy cell membranes, thus proving that the incorporation of APCs is, from a thermodynamic point of view, unfavorable for binary cholesterol/DPPC monolayers. It can be concluded that the composition of healthy cell membranes is a natural barrier preventing the incorporation of APCs into normal cells.  相似文献   

7.
Twenty-one isovanillin derivatives were prepared in order to evaluate their cytotoxic properties against the cancer cell lines B16F10-Nex2, HL-60, MCF-7, A2058 and HeLa. Among them, seven derivatives exhibited cytotoxic activity. We observed that for obtaining smaller IC50 values and for increasing the index of selectivity, two structural features are very important when compared with isovanillin (1); a hydroxymethyl group at C-1 and the replacement of the hydroxyl group at C-3 by different alkyl groups. As the lipophilicity of the compounds was changed, we decided to investigate the interaction of the cytotoxic isovallinin derivatives on cell membrane models through Langmuir monolayers by employing the lipids DPPC (1,2-diplamitoyl-sn-glycero-3-phosphocoline) and DPPS (1,2-diplamitoyl-sn-glycero-3-phosphoserine). The structural changes on the scaffold of the compounds modulated the interaction with the phospholipids at the air-water interface. These results were very important to understand the biophysical aspects related to the interaction of the cytotoxic compounds with the cancer cell membranes.  相似文献   

8.
The modification of lipid bilayer permeability is one of the most striking yet poorly understood physical transformations that follow photoinduced lipid oxidation. We have recently proposed that the increase of permeability of photooxidized 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers is controlled by the time required by the oxidized lipid species to diffuse and aggregate into pores. Here we further probe this mechanism by studying photosensitization of DOPC membranes by methylene blue (MB) and DO15, a more hydrophobic phenothiazinium photosensitizer, under different irradiation powers. Our results not only reveal the interplay between the production rate and the diffusion of the oxidized lipids, but highlight also the importance of photosensitizer localization in the kinetics of oxidized membrane permeability.  相似文献   

9.
We present a highly sensitive nuclear-magnetic resonance technique to study membrane dynamics that combines the temporary encapsulation of spin-hyperpolarized xenon (129Xe) atoms in cryptophane-A-monoacid (CrAma) and their indirect detection through chemical exchange saturation transfer. Radiofrequency-labeled Xe@CrAma complexes exhibit characteristic differences in chemical exchange saturation transfer-driven depolarization when interacting with binary membrane models composed of different molecular ratios of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine). The method is also applied to mixtures of cholesterol and POPC. The existence of domains that fluctuate in cluster size in DPPC/POPC models at a high (75–98%) DPPC content induces up to a fivefold increase in spin depolarization time τ at 297 K. In POPC/cholesterol model membranes, the parameter τ depends linearly on the cholesterol content at 310 K and allows us to determine the cholesterol content with an accuracy of at least 5%.  相似文献   

10.
The increased use of plant sterols as cholesterol-lowering agents warrants further research on the possible effects of plant sterols in membranes. In this study, the effects of the incorporation of cholesterol, campesterol, β-sitosterol and stigmasterol in phospholipid bilayers were investigated by differential scanning calorimetry (DSC), resonance energy transfer (RET) between trans parinaric acid (tPA) and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and Triton X-100-induced solubilization. The phospholipids used were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), d-erythro-N-palmitoyl-sphingomyelin (PSM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). In DSC experiments, it was demonstrated that the sterols differed in their effect on the melting temperatures of both the sterol-poor and the sterol-rich domains in DPPC and PSM bilayers. The plant sterols gave rise to lower temperatures of both transitions, when compared with cholesterol. The plant sterols also resulted in lower transition temperatures, in comparison with cholesterol, when sterol-containing DPPC and PSM bilayers were investigated by RET. In the detergent solubilization experiments, the total molar ratio between Triton X-100 and POPC at the onset of solubilization (Rt,sat) was higher for bilayers containing plant sterols, in comparison with membranes containing cholesterol. Taken together, the observations presented in this study indicate that campesterol, β-sitosterol and stigmasterol interacted less favorably than cholesterol with the phospholipids, leading to measurable differences in their domain properties.  相似文献   

11.
The interactions between oxygen and lipid membranes play fundamental roles in basic biological processes (e.g., cellular respiration). Obviously, membrane oxidation is expected to be critically dependent on the distribution and concentration of oxygen in the membrane. Here, we combined theoretical and experimental methods to investigate oxygen partition and distribution in lipid membranes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a temperature range between 298 and 323 K, specifically focusing on the changes caused by the lipid phase and phase transition. Even though oxygen is known to be more concentrated in the center of fluid phase membranes than on the headgroup regions, the distribution profile of oxygen inside gel-phase bilayers remained to be determined. Molecular dynamics simulations now show that the distribution of oxygen inside DPPC bilayers dramatically changes upon crossing the main transition temperature, with oxygen being nearly depleted halfway from the headgroups to the membrane center below the transition temperature. In a parallel approach, singlet oxygen luminescence emission measurements employing the photosensitizer Pheophorbide-a (Pheo) confirmed the differences in oxygen distribution and concentration profiles between gel- and fluid-phase membranes, revealing changes in the microenvironment of the embedded photosensitizer. Our results also reveal that excited triplet state lifetime, as it can be determined from the singlet oxygen luminescence kinetics, is a useful probe to assess oxygen distribution in lipid membranes with distinct lipid compositions.  相似文献   

12.
We present a highly sensitive nuclear-magnetic resonance technique to study membrane dynamics that combines the temporary encapsulation of spin-hyperpolarized xenon (129Xe) atoms in cryptophane-A-monoacid (CrAma) and their indirect detection through chemical exchange saturation transfer. Radiofrequency-labeled Xe@CrAma complexes exhibit characteristic differences in chemical exchange saturation transfer-driven depolarization when interacting with binary membrane models composed of different molecular ratios of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine). The method is also applied to mixtures of cholesterol and POPC. The existence of domains that fluctuate in cluster size in DPPC/POPC models at a high (75–98%) DPPC content induces up to a fivefold increase in spin depolarization time τ at 297 K. In POPC/cholesterol model membranes, the parameter τ depends linearly on the cholesterol content at 310 K and allows us to determine the cholesterol content with an accuracy of at least 5%.  相似文献   

13.
To facilitate the early diagnosis of Alzheimer's disease and mild cognitive impairment patients, we developed a cantilever-based microsensor that immobilized liposomes of various phospholipids to detect a trace amount of amyloid β (Aβ) protein, and investigated its aggregation and fibrillization on model cell membranes in human serum. Three species of liposomes composed of different phospholipids of 1,2-dipalmtoyl-sn-glycero-3-phosphocholine (DPPC), DPPC/phosphatidyl ethanolamine and 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol having varied hydrophilic groups were applied, which showed different chronological interactions with Aβ(1–40) protein and varied sensitivities of the cantilever sensor, depending on their specific electrostatic charged conditions, hydrophilicity, and membrane fluidity. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) having short hydrophobic carbon chains confirmed to show a large interaction with Aβ(1–40) and a high sensitivity. Furthermore, the incorporation of cholesterol into DMPC was effective to selectively detect Aβ(1–40) in human serum, which effect was also checked by quartz crystal microbalance. Finally, Aβ detection of 100-pM order was expected selectively in the serum by using the developed biosensor.  相似文献   

14.
The kinetics of cholesterol extraction from cellular membranes is complex and not yet completely understood. In this paper we have developed an experimental approach to directly monitor the extraction of cholesterol from lipid membranes by using surface plasmon resonance and model lipid systems. Methyl-β-cyclodextrin was used to selectively remove cholesterol from large unilamellar vesicles of various compositions. The amount of extracted cholesterol is highly dependent on the composition of lipid membrane, i.e. the presence of sphingomyelin drastically reduced and slowed down cholesterol extraction by methyl-β-cyclodextrin. This was confirmed also in the erythrocyte ghosts system, where more cholesterol was extracted after erythrocytes were treated with sphingomyelinase. We further show that the kinetics of the extraction is mono-exponential for mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The kinetics is complex for ternary lipid mixtures composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine, bovine brain sphingomyelin and cholesterol. Our results indicate that the complex kinetics observed in experiments with cells may be the consequence of lateral segregation of lipids in cell plasma membrane.  相似文献   

15.
Wide angle x-ray scattering (WAXS) from oriented lipid multilayers is used to examine liquid-ordered (Lo)/liquid-disordered (Ld) phase coexistence in the system 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DOPC/DPPC/Chol), which is a model for the outer leaflet of the animal cell plasma membrane. Using the method of analysis developed in the accompanying work, we find that two orientational distributions are necessary to fit the WAXS data at lower temperatures, whereas only one distribution is needed at temperatures higher than the miscibility transition temperature, Tmix = 25-35°C (for 1:1 DOPC/DPPC with 15%, 20%, 25%, and 30% Chol). We propose that the necessity for two distributions is a criterion for coexistence of Lo domains with a high Sx-ray order parameter and Ld domains with a lower order parameter. This criterion is capable of detecting coexistence of small domains or rafts that the conventional x-ray criterion of two lamellar D spacings may not. Our Tmix values tend to be slightly larger than published NMR results and microscopy results when the fluorescence probe artifact is considered. This is consistent with the sensitivity of WAXS to very short time and length scales, which makes it more capable of detecting small, short-lived domains that are likely close to Tmix.  相似文献   

16.
Azithromycin is a macrolide antibiotic known to bind to lipids and to affect endocytosis probably by interacting with lipid membranes [Tyteca, D., Schanck, A., Dufrene, Y.F., Deleu, M., Courtoy, P.J., Tulkens, P.M., Mingeot-Leclercq, M.P., 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192, 203-215]. In this work, we investigate the effect of azithromycin on lipid model membranes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Thermal transitions of both lipids in contact with azithromycin are studied by (31)P NMR and DSC on multilamellar vesicles. Concerning the DPPC, azithromycin induces a suppression of the pretransition whereas a phase separation between the DOPC and the antibiotic is observed. For both lipids, the enthalpy associated with the phase transition is strongly decreased with azithromycin. Such effects may be due to an increase of the available space between hydrophobic chains after insertion of azithromycin in lipids. The findings provide a molecular insight of the phase merging of DPPC gel in DOPC fluid matrix induced by azithromycin [Berquand, A., Mingeot-Leclercq, M.P., Dufrene, Y.F., 2004. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta 1664, 198-205] and could help to a better understanding of azithromycin-cell interaction.  相似文献   

17.
The deposition of insoluble amyloid fibrils resulting from the aggregation of the human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is a pathological feature of type 2 diabetes mellitus (T2DM). Increasing evidence indicates that biological membranes play a key role in amyloid aggregation, modulating among others the kinetics of amyloid formation, and being the target of toxic species generated during amyloid formation. In T2DM patients, elevated levels of cholesterol, an important determinant of the physical state of biological membranes, are observed in β-cells and are thought to directly impair β-cell function and insulin secretion. However, it is not known whether cholesterol enhances membrane-interaction or membrane-insertion of hIAPP. In this study, we investigated the effect of cholesterol incorporated in zwitterionic and anionic membranes. Our circular dichroism and liquid state NMR data reveal that 10–30% of cholesterol slightly affects the aggregational and conformational behaviour of hIAPP. Additional fluorescence results indicate that 10 and 20% of cholesterol slightly slow down the kinetics of oligomer and fibril formation while anionic lipids accelerate this kinetics. This behavior might be caused by differences in membrane insertion and therefore in membrane binding of hIAPP. The membrane binding affinity was evaluated using 1H NMR experiments and our results show that the affinity of hIAPP for membranes containing cholesterol is significantly smaller than that for membranes containing anionic lipids. Furthermore, we found that hIAPP-induced membrane damage is synchronized to fibril formation in the absence and in the presence of cholesterol.  相似文献   

18.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

19.
Most biological phospholipids contain at least one unsaturated alkyl chain. However, few order parameters of unsaturated lipids have been determined because of the difficulty associated with isotopic labeling of a double bond. Dipolar recoupling on axis with scaling and shape preservation (DROSS) is a solid-state nuclear magnetic resonance technique optimized for measuring 1H–13C dipolar couplings and order parameters in lipid membranes in the fluid phase. It has been used to determine the order profile of 1,2-dimyristoyl-sn-glycero-3-phosphocholine hydrated membranes. Here, we show an application for the measurement of local order parameters in multilamellar vesicles containing unsaturated lipids. Taking advantage of the very good 13C chemical shift dispersion, one can easily follow the segmental order along the acyl chains and, particularly, around the double bonds where we have been able to determine the previously misassigned order parameters of each acyl chain of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We have followed the variation of such order profiles with temperature, unsaturation content and cholesterol addition. We have found that the phase formed by DOPC with 30% cholesterol is analogous to the liquid-ordered (lo) phase. Because these experiments do not require isotopic enrichment, this technique can, in principle, be applied to natural lipids and biomembranes.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

20.
Lipid modifications of proteins are widespread in nature and play an important role in numerous biological processes. The nonreceptor tyrosine kinase Src is equipped with an N-terminal myristoyl chain and a cluster of basic amino acids for the stable membrane association of the protein. We used 2H NMR spectroscopy to investigate the structure and dynamics of the myristoyl chain of myr-Src(2-19), and compare them with the hydrocarbon chains of the surrounding phospholipids in bilayers of varying surface potentials and chain lengths. The myristoyl chain of Src was well inserted in all bilayers investigated. In zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine membranes, the myristoyl chain of Src was significantly longer and appears “stiffer” than the phospholipid chains. This can be explained by an equilibrium between the attraction attributable to the insertion of the myristoyl chain and the Born repulsion. In a 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] membrane, where attractive electrostatic interactions come into play, the differences between the peptide and the phospholipid chain lengths were attenuated, and the molecular dynamics of all lipid chains were similar. In a much thicker 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine]/cholesterol membrane, the length of the myristoyl chain of Src was elongated nearly to its maximum, and the order parameters of the Src chain were comparable to those of the surrounding membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号