首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang  Jiaxian  Jing  Yu  Zhang  Hu  Liu  Ping 《Amino acids》2021,53(9):1441-1454

l-arginine is a versatile amino acid with a number of bioactive metabolites. Increasing evidence implicates altered arginine metabolism in the aging and neurodegenerative processes. The present study, for the first time, determined the effects of sex and estrous cycle on the brain and blood (plasma) arginine metabolic profile in naïve rats. Female rats displayed significantly lower levels of l-arginine in the frontal cortex and three sub-regions of the hippocampus when compared to male rats. Moreover, female rats had significantly higher levels of l-arginine and γ-aminobutyric acid, but lower levels of l-ornithine, agmatine and putrescine, in plasma relative to male rats. The observed sex difference in brain l-arginine appeared to be independent of the enzymes involved in its metabolism, de novo synthesis and blood-to-brain transport (cationic acid transporter 1 protein expression at least), as well as circulating l-arginine. While the estrous cycle did not affect l-arginine and its metabolites in the brain, there were estrous cycle phase-dependent changes in plasma l-arginine. These findings demonstrate the sex difference in brain l-arginine in the estrous cycle-independent manner. Since peripheral blood has been increasingly used to identify biomarkers of brain pathology, the influences of sex and estrous cycle on blood arginine metabolic profile need attention when experimental research involves female rodents.

  相似文献   

2.
Liu  Ke  Yu  Haoran  Sun  Guoyun  Liu  Yanfeng  Li  Jianghua  Du  Guocheng  Lv  Xueqin  Liu  Long 《Amino acids》2021,53(9):1361-1371

In our previous study, one-step pyruvate and d-alanine production from d,l-alanine by a whole-cell biocatalyst Escherichia coli expressing l-amino acid deaminase (Pm1) derived from Proteus mirabilis was investigated. However, due to the low catalytic efficiency of Pm1, the pyruvate titer was relatively low. Here, semi-rational design based on site-directed saturation mutagenesis was carried out to improve the catalytic efficiency of Pm1. A novel high-throughput screening (HTS) method for pyruvate based on 2,4-dinitrophenylhydrazine indicator was then established. The catalytic efficiency (kcat/Km) of the mutant V437I screened out by this method was 1.88 times higher than wild type. Next, to improve the growth of the engineered strain BLK07, the genes encoding for Xpk and Fbp were integrated into its genome to construct non-oxidative glycolysis (NOG) pathway. Finally, the CRISPR/Cas9 system was used to integrate the N6-pm1-V437I gene into the genome of BLK07. Pyruvic acid titer of the plasmid-free strain reached 42.20 g/L with an l-alanine conversion rate of 77.62% and a d-alanine resolution of 82.4%. This work would accelerate the industrial production of pyruvate and d-alanine by biocatalysis, and the HTS method established here could be used to screen other Pm1 mutants with high pyruvate titers.

  相似文献   

3.
Oikawa  Tadao  Okajima  Kouhei  Yamanaka  Kazuya  Kato  Shiro 《Amino acids》2022,54(5):787-798

We succeeded in expressing selenocysteine β-lyase (SCL) from a lactic acid bacterium, Leuconostoc mesenteroides LK-151 (Lm-SCL), in the soluble fractions of Escherichia coli Rosetta (DE3) using a novel expression vector of pET21malb constructed by ourselves that has both maltose binding protein (MBP)- and 6?×?His-tag. Lm-SCL acted on l-selenocysteine, l-cysteine, and l-cysteine sulfinic acid but showed a high preference for l-selenocysteine. The kcat and kcat/Km values of Lm-SCL were determined to be 108 (min?1) and 42.0 (min?1?mM?1), respectively, and this was enough catalytic efficiency to suggest that Lm-SCL might also be involved in supplying elemental selenium from l-selenocysteine to selenoproteins like other SCLs. The optimum temperature and optimum pH of Lm-SCL were determined to be 37 °C and pH 6.5, respectively. Lm-SCL was stable at 37–45 °C and pH 6.5–7.5. Lm-SCL was completely inhibited by the addition of hydroxylamine, semicarbazide, and iodoacetic acid. The enzyme activity of Lm-SCL was decreased in the presence of various metal ions, especially Cu2+. The quaternary structure of Lm-SCL is a homodimer with a subunit molecular mass of 47.5 kDa. The similarity of the primary structure of Lm-SCL to other SCLs from Citrobacter freundii, Escherichia coli, humans, or mouse was calculated to be 47.0, 48.0, 12.5, or 24.0%, respectively. Unlike Ec-SCL, our mutational and molecular docking simulation studies revealed that C362 of Lm-SCL might also catalyze the deselenation of l-selenocysteine in addition to the desulfuration of l-cysteine.

  相似文献   

4.

Oral mucositis is an inflammation of the oral mucosa mainly resulting from the cytotoxic effect of 5-fluorouracil (5-FU). The literature shows anti-inflammatory action of l-cysteine (l-cys) involving hydrogen sulfide (H2S). In view of these properties, we investigate the effect of l-cys in oral mucositis induced by 5-FU in hamsters. The animals were divided into the following groups: saline 0.9%, mechanical trauma, 5-FU 60–40 mg/kg, l-cys 10/40 mg and NaHS 27 µg/kg. 5-FU was administered on days 1st to 2nd; 4th day excoriations were made on the mucosa; 5th–6th received l-cys and NaHS. For data analysis, histological analyses, mast cell count, inflammatory and antioxidants markers, and immunohistochemistry (cyclooxygenase-2(COX-2)/inducible nitric oxide synthase (iNOs)/H2S) were performed. Results showed that l-cys decreased levels of inflammatory markers, mast cells, levels of COX-2, iNOS and increased levels of antioxidants markers and H2S when compared to the group 5-FU (p < 0.005). It is suggested that l-cys increases the H2S production with anti-inflammatory action in the 5-FU lesion.

  相似文献   

5.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

6.
Yang  Jiangxia  Li  Xiaoqi  Du  Yingxiang  Ma  Mingxuan  Zhang  Liu  Zhang  Jian  Li  Peipei 《Amino acids》2021,53(2):195-204

In this work, we prepared gold nanoparticles (AuNPs) by employing gluconic acid (GlcA) as reducing-cum-stabilizing agent. The proposed GlcA-AuNPs successfully worked as a colorimetric sensor for visual chiral recognition of aromatic amino acid enantiomers, namely tyrosine (d/l-Tyr), phenylalanine (d/l-Phe), and tryptophan (d/l-Trp). After adding L-types to GlcA-AuNPs solution, the color of the mixture changed from red to purple (or gray), while no obvious color change occurred on the addition of D-types. The effect can be detected by naked eyes. The particles have been characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, zeta potential, the dynamic light scattering analysis as well as UV–Vis spectroscopy. This assay can be used to determine the enantiomeric excess of l-Trp in the range from 0 to + 100%. The method has advantages in simplicity, sensitivity, fast response, and low cost.

  相似文献   

7.

l-Carnosine is an amino acid that acts as an anti-oxidant, anti-toxic and neuroprotective agent. There is a paucity of data about the effectiveness of l-Carnosine in the management of autism spectrum disorder (ASD) in children. This study aimed at investigating the effectiveness of l-Carnosine as adjunctive therapy in the management of ASD. This was a randomized controlled trial. Children aged 3–6 years with a diagnosis of mild to moderate ASD were assigned to standard care arm (occupational and speech therapy) and intervention care arm (l-Carnosine, 10–15 mg/kg in 2 divided doses) plus standard care treatment. The children were assessed at the baseline and the end of 2 months for the scores of Childhood Autism Rating Scale, Second Edition—Standard Version (CARS2-ST), Autism Treatment Evaluation Checklist (ATEC), BEARS sleep screening tool and 6-item Gastrointestinal Severity Index (6-GSI). Of the sixty-seven children enrolled, sixty-three children had completed the study. No statistically significant difference (p > 0.05) was observed for any of the outcome measures assessed. Supplementation of l-Carnosine did not improve the total score of CARS2-ST, ATEC, BEARS sleep screening tool and 6-GSI scores of children with ASD. Further investigations are needed with more objective assessments to critically validate the effectiveness of l-Carnosine on ASD children for more decisive results.

  相似文献   

8.
Sun  Yaqin  Yang  Yong  Liu  Huihui  Wei  Chuanxiang  Qi  Wenbin  Xiu  Zhilong 《Bioprocess and biosystems engineering》2020,43(9):1717-1724

Simultaneous liquefaction, saccharification, and fermentation (SLSF) has attracted much attention for the production of bio-based chemicals, including l-lactic acid, due to its high efficiency and low cost. In this study, a lactic acid-producing bacterium with high tolerance of temperature up to 55 °C was isolated and characterized as Enterococcus faecalis DUT1805. Various strategies of stepwise controlled temperature were proposed and investigated for glucose utilization. The results indicated that E. faecalis DUT 1805 exhibited an optimal temperature at 50 °C, which could achieve temperature compatibility of enzyme, saccharification, and fermentation, and decrease the possibility of contamination by the other microorganisms during the large-scale fermentation. To reduce the cost of raw material and operation for lactic acid production, aging paddy rice with hull (APRH) was used in l-lactic acid production by simultaneous liquefaction, saccharification, and fermentation (SLSF). An open SLSF operation at 50 °C and pH 6.5, and 17% (w/v) solid loading in 5 L bioreactors was demonstrated with the lactic acid titer, yield, and productivity of 73.75 g/L, 87% to initial starch, and 2.17 g/(L h), respectively.

  相似文献   

9.
The distribution of tyrosine phenol lyase activity in microorganisms was studied with intact cells in a synthetic reaction mixture containing l-serine and phenol or pyrocatechol. This activity was found in various bacteria, most of which belonged to the Enterobacteriaceae; especially to the genera Escherichia, Proteus and Erwinia. Cells of Erwinia herbicola ATCC 21434 were selected as a promising source of enzyme.

Intact cells of Erwinia herbicola ATCC 21434 prepared from a broth cultured for 24 hr contained markedly high enzymic activity and catalyzed the synthetic reaction of l-tyrosine or 3,4-dihydroxyphenyl-l-alanine (l-dopa) from l-serine and phenol or pyrocatechol in significantly high yields.

Results of the isolation and identification of the products showed that the amino acid synthesized by this enzymatic method was identical with l-tyrosine or l-dopa.  相似文献   

10.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   

11.
Several kinds of mutants of Pseudomonas melanogenum were derived by mutational treatment with N-methyl-N’-nitro-N-nitrosoguanidine, and selected for 3,4-dihydroxyphenyl-l-alanine (l-DOPA) production by newly devised screening method which was carried out on agar plates based on violet-black colour formation by the reaction of l-DOPA with iron ion. Mutants tested were; glucose-insensitive mutant, cysteine-insensitive mutant, 3-amino-tyrosine-resistant mutant and p-fluorophenylalanine-resistant mutant. Some colonies isolated by monocolony procedure without mutagenic treatment were also tested. Among the 3-aminotyrosine-resistant mutants many good l-DOPA producers were found.

An 3-aminotyrosine-resistant mutant, strain ATN–36, produced 14 to 15 mg/ml of l-DOPA from 26 mg/ml of l-tyrosine (68 % in molar conversion ratio). When the cell concentration in reaction mixture was increased to 4-times the concentration of culture broth, l-DOPA production reached to 21 mg/ml from 52 mg/ml of tyrosine. An enzymatic basis of the high l-DOPA productivity of the improved mutants was found to be due to the increased tyrosinase activity (150 to 160% of the parental strain) of the mutants.  相似文献   

12.

At present, physicochemical properties of amino acid molecular crystals are of the utmost interest. The compounds where molecules have different chirality are the focus of particular interest. This paper, presents a study on the structural and electronic properties of crystalline l- and dl-valine within the framework of density functional theory including van der Waals interactions. The results of this study showed that electronic properties of the two forms of valine are similar at zero pressure. Pressure leads to different responses in these crystals which is manifested as various deformations of molecules. The pressure effect on the infrared spectra and distribution of electron density of l- and dl-valine has been studied.

  相似文献   

13.
In the present study, we investigated the effects of l-DOPA (l-3,4-dihydroxyphenylalanine), an allelochemical exuded from the velvetbean (Mucuna pruriens L DC. var. utilis), on the growth and cell viability of soybean (Glycine max L. Merrill) roots. We analyzed the effects of l-DOPA on phenylalanine ammonia lyase (PAL), cinnamyl-alcohol dehydrogenase (CAD) and cell wall-bound peroxidase (POD) activities as well as its effects on phenylalanine, tyrosine and lignin contents in the roots. 3-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), with or without 0.5?mM l-DOPA, in a growth chamber at 25?°C for 6, 12, 18 or 24?h with a day/night regime of 1:1, and a photon flux density of 280???mol?m?2 s?1. In general, the length, fresh weight and dry weight of the roots decreased followed by a significant loss of cell viability. Phenylalanine, tyrosine and lignin contents as well as PAL, CAD and cell wall-bound POD activities increased after l-DOPA treatment. These results reinforce the susceptibility of soybean to l-DOPA, which increases the enzyme activity in the phenylpropanoid pathway and, therefore, provides precursors for the polymerization of lignin. In brief, these findings suggest that the inhibition of soybean root growth induced by exogenously applied l-DOPA may be due to excessive production of lignin in the cell wall.  相似文献   

14.
The synthesis of l-tyrosine or 3,4-dihydroxyphenyl-l-alanine (l-dopa) from pyruvate, ammonia and phenol or pyrocatechol was studied with intact cells of Erwinia herbicola ATCC 21434 containing high tyrosine phenol lyase activity. By elemental analyses and determination of optical activity, the tyrosine or dopa synthesized was confirmed to be entirely of l-form. Maximum amount of l-tyrosine (60.5 g/liter) or l-dopa (58.5 g/liter) was formed using this enzymatic method by feeding sodium pyruvate and phenol or pyrocatechol. However, large amounts of by-products were formed in the l-dopa synthetic reaction mixture. By-products were proved to be formed from l-dopa and pyruvate by a nonenzymic reaction. pH and the temperature of reaction had intensive effects on the formation of by-products. A simple method using a boric acid-pyrocatechol complex was devised, as the feeding procedure of substrates was complicated.  相似文献   

15.
Pseudomonas melanogenum ATCC 17806 required methionine, cysteine, cystine, cystathionine, homocysteine or homocystine for growth. However, the addition of these amino acids decreased remarkably l-DOPA (3,4-dihydroxyphenyl-l-alanine) production by the bacterium. l-DOPA production by the bacterium was further affected by the amount of the substrate, the method of its addition and by the addition of antioxidants, as was the case with Vibrio tyrosinaticus.

Under suitable conditions about 8 mg/ml of l-DOPA were produced from 8.6 mg/ml of l-tyrosine.  相似文献   

16.

Iron deficiency is one of the most prevailing micronutrient deficiencies throughout the globe. Iron malnutrition affects billions of people around the world especially children and pregnant women. Its deficiencies can be overcome through microbial biofortification: a process of deliberately increasing desirable nutrients in crop plants. Plant growth-promoting rhizobacteria (PGPR) can improve iron content in edible plant tissues through different direct and indirect mechanisms. Adding plant growth regulators along with rhizobacteria makes it a novel fortification approach. In the current experiment, the interactive effect of two bacterial isolates (O-13 & K-10) alone and in consortium with l-tryptophan in the presence of iron sulfate was evaluated on growth, physiology, tuber characteristics, and iron concentration in potato (Solanum tuberosum L.). Results revealed that inoculation with PGPR and plant growth regulator (PGR) significantly improved the plant height, straw yield, and the number of tubers per plant. Potato (Solanum tuberosum L.) tuber characteristics (starch content, vitamin-C, relative water content) were also improved significantly. O-13, K-10, and l-tryptophan had significantly improved the iron concentration up to 20.59, 33.12, and 28.95%, respectively. However, inoculation with the microbial consortium and l-tryptophan showed a significant increase of up to one-fold in the iron concentration of potato (Solanum tuberosum L.) as compared with uninoculated control. The results suggest that rhizobacteria can help the plant to uptake nutrients from the soil. These findings concluded on the fact that the interactive effect of microbial assisted biofortification and plant growth regulator is a novel, promising, and cost-effective approach to mitigate micronutrient deficiencies especially in resource-limited countries.

  相似文献   

17.
Lee  Doo-Hee  Kim  Yang Hee  Baek  Mina  Heo  In Kyung  Shin  Yonguk 《Amino acids》2023,55(2):173-182

L-tryptophan has been used as a feed additive for swine and poultry and as a nutrient supplement for humans. However, some impurities in l-tryptophan have been reported as causative components of eosinophilia-myalgia syndrome. Therefore, from a safety perspective, it is important to analyze meat samples for these impurities. This study aims to develop an analytical method for the simultaneous detection of l-tryptophan impurities in meat products using LC–MS/MS. Among the various impurities, detection methods for (S)-2-amino-3-(5-hydroxy-1H-indol-3-yl)propanoic acid (5-hydroxytryptophan) (HTP), 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA), 3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo-[2,3-b]-indole-2-carboxylic acid (PIC), and 1,1′-ethylidenebistryptophan (EBT) and 2-(3-indoylmethyl)-l-tryptophan (IMT) were developed. The developed method allowed simultaneous determination of these four impurities in 5 min. No interferences from the matrix were observed, and the method showed good sensitivity to each analyte. The method detection limit and limit of quantification in meat matrices were below 11.2 and 35.7 μg/kg, respectively.

  相似文献   

18.
A synthetic gene encoding a Streptomyces l-proline-3-hydroxylase was constructed and used to produce the hydroxylase protein in recombinant Escherichia coli. A fermentation process for growth of this recombinant E. coli for enzyme production was scaled-up to 250 L. A biotransformation process was developed using cell suspensions of the recombinant E. coli and subsequently scaled-up to 10 L for conversion of l-proline to cis-3-hydroxy-l-proline. A reaction yield of 85 M% and d.e. of 99.9% was obtained for cis-3-hydroxy-l-proline.  相似文献   

19.
l-DOPA (3,4-dihydroxyphenyl-l-alanine) is the most widely used drug for treatment of Parkinson’s disease. In this study Yarrowia lipolytica-NCIM 3472 biomass was used for transformation of l-tyrosine to l-DOPA. The process parameters were optimized using response surface methodology (RSM). The optimum values of the tested variables for the production of l-DOPA were: pH 7.31, temperature 42.9 °C, 2.31 g l?1 cell mass and 1.488 g l?1 l-tyrosine. The highest yield obtained with these optimum parameters along with recycling of the cells was 4.091 g l?1. This optimization of process parameters using RSM resulted in 4.609-fold increase in the l-DOPA production. The statistical analysis showed that the model was significant. Also coefficient of determination (R2) was 0.9758, indicating a good agreement between the experimental and predicted values of l-DOPA production. The highest tyrosinase activity observed was 7,028 U mg?1 tyrosine. l-DOPA production was confirmed by HPTLC and HPLC analysis. Thus, RSM approach effectively enhanced the potential of Y. lipolytica-NCIM 3472 as an alternative source to produce l-DOPA.  相似文献   

20.
l-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, l-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce l-serine from glucose. To accumulate l-serine, sdaA encoding the l-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious l-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA FR , serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L l-serine in batch cultivation and 8.34 g/L l-serine in fed-batch cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号