首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxidation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron transporting complexes bc1 complex and the cytochrome c oxidase assemble into large supercomplexes, allowing efficient energy transduction. Currently, we have only limited information about what determines the structure of the supercomplex. Here, we characterize Aim24 in baker’s yeast as a protein, which is integrated in the mitochondrial inner membrane and is required for the structural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24 has a function in stabilizing the respiratory chain supercomplexes.  相似文献   

2.
《BBA》2020,1861(7):148193
Components of respiratory chains in mitochondria and some aerobic bacteria assemble into larger, multiprotein membrane-bound supercomplexes. Here, we address the functional significance of supercomplexes composed of respiratory-chain complexes III and IV. Complex III catalyzes oxidation of quinol and reduction of water-soluble cytochrome c (cyt c), while complex IV catalyzes oxidation of the reduced cyt c and reduction of dioxygen to water. We focus on two questions: (i) under which conditions does diffusion of cyt c become rate limiting for electron transfer between these two complexes? (ii) is there a kinetic advantage of forming a supercomplex composed of complexes III and IV? To answer these questions, we use a theoretical approach and assume that cyt c diffuses in the water phase while complexes III and IV either diffuse independently in the two dimensions of the membrane or form supercomplexes. The analysis shows that the electron flux between complexes III and IV is determined by the equilibration time of cyt c within the volume of the intermembrane space, rather than the cyt c diffusion time constant. Assuming realistic relative concentrations of membrane-bound components and cyt c and that all components diffuse independently, the data indicate that electron transfer between complexes III and IV can become rate limiting. Hence, there is a kinetic advantage of bringing complexes III and IV together in the membrane to form supercomplexes.  相似文献   

3.
To understand the roles of mitochondrial respiratory chain supercomplexes, methods for consistently separating and preparing supercomplexes must be established. To this end, we solubilized supercomplexes from bovine heart mitochondria with digitonin and then replaced digitonin with amphipol (A8–35), an amphiphilic polymer. Afterward, supercomplexes were separated from other complexes by sucrose density gradient centrifugation. Twenty-six grams of bovine myocardium yielded 3.2 mg of amphipol-stabilized supercomplex. The purified supercomplexes were analyzed based on their absorption spectra as well as Q10 (ubiquinone with ten isoprene units) and lipid assays. The supercomplex sample did not contain cytochrome c but did contain complexes I, III, and IV at a ratio of 1:2:1, 6 molecules of Q10, and 623 atoms of phosphorus. When cytochrome c was added, the supercomplex exhibited KCN-sensitive NADH oxidation; thus, the purified supercomplex was active. Reduced complex IV absorbs at 444 nm, so we measured the resonance Raman spectrum of the reduced amphipol-solubilized supercomplex and the mixture of amphipol-solubilized complexes I1, III2, and IV1 using an excitation wavelength of 441.6 nm, allowing measurement precision comparable with that obtained for complex IV alone. Use of the purified active sample provides insights into the effects of supercomplex formation.  相似文献   

4.
Yeast cells deficient in the Rieske iron-sulfur subunit (Rip1) of ubiquinol-cytochrome c reductase (bc1) accumulate a late core assembly intermediate, which weakly associates with cytochrome oxidase (CcO) in a respiratory supercomplex. Expression of the N-terminal half of Rip1, which lacks the C-terminal FeS-containing globular domain (designated N-Rip1), results in a marked stabilization of trimeric and tetrameric bc1-CcO supercomplexes. Another bc1 mutant (qcr9Δ) stalled at the same assembly intermediate is likewise converted to stable supercomplex species by the expression of N-Rip1, but not by expression of intact Rip1. The N-Rip1-induced stabilization of bc1-CcO supercomplexes is independent of the Bcs1 translocase, which mediates Rip1 translocation during bc1 biogenesis. N-Rip1 induces the stabilization of bc1-CcO supercomplexes through an enhanced formation of CcO. The association of N-Rip1 with the late core bc1 assembly intermediate appears to confer stabilization of a CcO assembly intermediate. This induced stabilization of CcO is dependent on the Rcf1 supercomplex stabilization factor and only partially dependent on the presence of cardiolipin. N-Rip1 exerts a related induction of CcO stabilization in WT yeast, resulting in enhanced respiration. Additionally, the impact of CcO stabilization on supercomplexes was observed by means other than expression of N-Rip1 (via overexpression of CcO subunits Cox4 and Cox5a), demonstrating that this is a general phenomenon. This study presents the first evidence showing that supercomplexes can be stabilized by the stimulated formation of CcO.  相似文献   

5.
Respiration in Saccharomyces cerevisiae is regulated by small proteins such as the respiratory supercomplex factors (Rcf). One of these factors (Rcf1) has been shown to interact with complexes III (cyt. bc1) and IV (cytochrome c oxidase, CytcO) of the respiratory chain and to modulate the activity of the latter. Here, we investigated the effect of deleting Rcf1 on the functionality of CytcO, purified using a protein C-tag on core subunit 1 (Cox1). Specifically, we measured the kinetics of ligand binding to the CytcO catalytic site, the O2-reduction activity and changes in light absorption spectra. We found that upon removal of Rcf1 a fraction of the CytcO is incorrectly assembled with structural changes at the catalytic site. The data indicate that Rcf1 modulates the assembly and activity of CytcO by shifting the equilibrium of structural sub-states toward the fully active, intact form.  相似文献   

6.
7.
Flash-induced kinetics of the membrane potential increase related to electron transfer within the cytochrome (cyt) b/c1 complex (Phase III) and that of cyt c1+c2 reduction have been measured as a function of myxothiazol concentration in isolated chromatophores and whole cells of Rhodobacter sphaeroides. Upon addition of nonsaturating concentrations of myxothiazol, kinetics of Phase III display two phases, Phase IIIa and Phase IIIb. The amplitude of Phase IIIa, completed in about 10 ms, is proportional to the fraction of non-inhibited cyt b/c1 complexes, while its half-time is independent of the myxothiazol concentration. A fast cyt c1+c2 reduction phase is correlated to Phase IIIa. These experiments demonstrate that, in a range of time of several ms, diffusion of cyt c2 is restricted to domains formed by a supercomplex including two reaction centers (RCs) and a single cyt b/c1 complex, as proposed by Joliot et al. (Biochim Biophys Acta 975: 336–345, 1989). Phase IIIb, completed in about 100 ms, shows that positive charges or inhibitor molecules are exchanged between supercomplexes in this range of time. These exchanges occur within domains including 2 to 3 supercomplexes, i.e. in membrane domains smaller than a single chromatophore. These conclusions apply to both isolated chromatophores and whole cells.Abbreviations cyt cytochrome - MOPS 3-(N-morpholino)propane sulfonic acid - PMS phenazine methosulfate - P primary donor - Rb. Rhodobacter - RC reaction center  相似文献   

8.
9.
Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC–LH1–PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC–LH1–PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC–LH1–PufX arrays, but not with a fixed, stoichiometric cytbc1–RC–LH1–PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1–RC–PufX dimers & 2 RC–LH1–PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.  相似文献   

10.
The mitochondrial inner membrane contains two non-bilayer‐forming phospholipids, phosphatidylethanolamine (PE) and cardiolipin (CL). Lack of CL leads to destabilization of respiratory chain supercomplexes, a reduced activity of cytochrome c oxidase, and a reduced inner membrane potential Δψ. Although PE is more abundant than CL in the mitochondrial inner membrane, its role in biogenesis and assembly of inner membrane complexes is unknown. We report that similar to the lack of CL, PE depletion resulted in a decrease of Δψ and thus in an impaired import of preproteins into and across the inner membrane. The respiratory capacity and in particular the activity of cytochrome c oxidase were impaired in PE-depleted mitochondria, leading to the decrease of Δψ. In contrast to depletion of CL, depletion of PE did not destabilize respiratory chain supercomplexes but favored the formation of larger supercomplexes (megacomplexes) between the cytochrome bc1 complex and the cytochrome c oxidase. We conclude that both PE and CL are required for a full activity of the mitochondrial respiratory chain and the efficient generation of the inner membrane potential. The mechanisms, however, are different since these non-bilayer‐forming phospholipids exert opposite effects on the stability of respiratory chain supercomplexes.  相似文献   

11.
Here, we report for the first time in vitro reconstitution of the respiratory supercomplexes from individual complexes III and IV. Complexes III and IV were purified from Saccharomyces cerevisiae mitochondria. Complex III contained eight molecules of cardiolipin, and complex IV contained two molecules of cardiolipin, as determined by electrospray ionization-mass spectrometry. Complex IV also contained Rcf1p. No supercomplexes were formed upon mixing of the purified complexes, and low amounts of the supercomplex trimer III2IV1 were formed after reconstitution into proteoliposomes containing only phosphatidylcholine and phosphatidylethanolamine. Further addition of cardiolipin to the proteoliposome reconstitution mixture resulted in distinct formation of both the III2IV1 supercomplex trimer and III2IV2 supercomplex tetramer. No other anionic phospholipid was as effective as cardiolipin in supporting tetramer formation. Phospholipase treatment of complex IV prevented trimer formation in the absence of cardiolipin. Both trimer and tetramer formations were restored by cardiolipin. Analysis of the reconstituted tetramer by single particle electron microscopy confirmed native organization of individual complexes within the supercomplex. In conclusion, although some trimer formation occurred dependent only on tightly bound cardiolipin, tetramer formation required additional cardiolipin. This is consistent with the high cardiolipin content in the native tetramer. The dependence on cardiolipin for supercomplex formation suggests that changes in cardiolipin levels resulting from changes in physiological conditions may control the equilibrium between individual respiratory complexes and supercomplexes in vivo.  相似文献   

12.
Cytochrome c (cyt c) is a heme-containing protein that participates in electron transport in the respiratory chain and as a signaling molecule in the apoptotic cascade. Here we addressed the effect of removing mammalian cyt c on the integrity of the respiratory complexes in mammalian cells. Mitochondria from cyt c knockout mouse cells lacked fully assembled complexes I and IV and had reduced levels of complex III. A redox-deficient mutant of cyt c was unable to rescue the levels of complexes I and IV. We found that cyt c is associated with both complex IV and respiratory supercomplexes, providing a potential mechanism for the requirement for cyt c in the assembly/stability of complex IV.The mitochondrial electron transport chain consists of four multisubunit complexes, namely, NADH-ubiquinone oxidoreductase (complex I),2 succinate-ubiquinone oxidoreductase (complex II), ubiquinone-cytochrome c oxidoreductase (complex III), and cytochrome c oxidase (complex IV, COX). Cytochrome c (cyt c) shuttles electrons from oxidative phosphorylation complex III to complex IV. Electrons are transferred from reduced cyt c sequentially to the CuA site, heme a, heme a3, and CuB binuclear center in the complex IV before being finally transferred to molecular oxygen to generate water (1). Respiratory complexes are assembled into supercomplexes (also called respirasomes). These contain complex I bound to dimeric complex III and a variable copy number of complex IV (2).In Saccharomyces cerevisiae, cyt c is encoded by two genes: CYC1 and CYC7. Mutagenesis studies in yeast have shown that cyt c is required for the assembly of COX (3, 4). In yeast lacking both the cyt c genes (CYC1 and CYC7), COX assembly was absent. It was also shown that cyt c is only structurally required for COX assembly, because a catalytic mutant of cyt c (W65S) was sufficient to bring about near normal levels of COX. However, because yeast lacks complex I, they could not analyze the role of cyt c in the assembly/stability of complex I. Mammals possess two different isoforms of cyt c encoded on different chromosomes: the somatic (cyt cS)- and testis (cyt cT)-specific isoforms. In mouse, the cDNAs bear 74% homology, whereas the proteins possess 86% identity with most dissimilarity in the C terminus.Cardiolipin (CL) is an anionic phospholipid present almost exclusively in the mitochondrial membranes and constitutes 25% of its total phospholipids (5). Work from several laboratories showed that CL is essential for the membrane anchorage of the respiratory supercomplexes. CL has two main roles in the mitochondrial structure and function, namely, stabilization of mitochondrial membranes and specific interactions with proteins. CL deficiency results in inefficient energy transformation by oxidative phosphorylation, swelling of mitochondria, decreased ATP/oxygen ratio, and reduced membrane potential (6, 7). In accordance, in S. cerevisiae lacking CL synthase, the supercomplex comprising complexes III and IV is unstable (8). Assembly mutants of COX had significantly reduced CL synthase activity, whereas assembly mutants of respiratory complex III and complex V showed less inhibition (9). Subsequently, the proton gradient across the inner mitochondrial membrane was found to be important for CL formation and that CL synthase was stimulated by alkaline pH at the matrix side (10). In this study, we investigated the role of cyt c depletion on CL levels by examining its content and composition in cyt c null cells.Here we aimed to answer the following questions: What is the role of cyt c in the assembly and maintenance of the different respiratory complexes in mammals? Are there changes in the content/composition of lipids in the cyt c-ablated cells? Analysis of mouse fibroblasts revealed that cyt c is essential for the assembly/stability of COX, and a catalytically mutant form of cyt c cannot rescue the COX defect in the cyt c null cells. CL and triacylglycerols showed significant differences in the cyt c null cells, both in content and composition.  相似文献   

13.
The cytochrome bc1-cytochrome aa3 complexes together comprise one of the major branches of the bacterial aerobic respiratory chain. In actinobacteria, the cytochrome bc1 complex shows a number of unusual features in comparison to other cytochrome bc1 complexes. In particular, the Rieske iron-sulfur protein component of this complex, QcrA, is a polytopic rather than a monotopic membrane protein. Bacterial Rieske proteins are usually integrated into the membrane in a folded conformation by the twin arginine protein transport (Tat) pathway. In this study, we show that the activity of the Streptomyces coelicolor M145 cytochrome bc1 complex is dependent upon an active Tat pathway. However, the polytopic Rieske protein is still integrated into the membrane in a ΔtatC mutant strain, indicating that a second protein translocation machinery also participates in its assembly. Difference spectroscopy indicated that the cytochrome c component of the complex was correctly assembled in the absence of the Tat machinery. We show that the intact cytochrome bc1 complex can be isolated from S. coelicolor M145 membranes by affinity chromatography. Surprisingly, a stable cytochrome bc1 complex containing the Rieske protein can be isolated from membranes even when the Tat system is inactive. These findings strongly suggest that the additional transmembrane segments of the S. coelicolor Rieske protein mediate hydrophobic interactions with one or both of the cytochrome subunits.  相似文献   

14.
Visible spectroscopy was used to measure real-time changes in the oxidation state of cytochrome c (cyt c) and the a-cytochromes (cyt aa3) of cytochrome oxidase during mitochondrial outer membrane permeabilization (MOMP) initiated by anisomycin in HL-60 cells. The oxidation state of mitochondrial cyt c was found to be ≈62% oxidized before MOMP and became ≈70% oxidized after MOMP. In contrast, the cytosolic pool of cyt c was found to be almost fully reduced. This oxidation change allows cyt c release to be continuously and quantitatively monitored in real time. Anoxia and antimycin were used to fully reduce and fully oxidize, respectively, the mitochondrial pool of cyt c and it was found that the release of cyt c was independent of it oxidation state consistent with a simple model of cyt c passively diffusing down a concentration gradient through a pore or tear in the outer membrane. After MOMP was complete, the flux of cyt c diffusing back into the mitochondria was measured from the residual mitochondrial oxygen consumption after complete inhibition of the bc1 with antimycin and myxothiazol. The outer membrane was found to be highly permeable after MOMP implying that the reduction of cyt c in the cytosol must be very rapid. The permeability of the outer membrane measured in this study would result in the release of cyt c with a time constant of less than 1 s.  相似文献   

15.
Bovine heart cytochrome c oxidase and rat liver mitochondria were crosslinked in the presence and absence of cytochrome c. Biimidate treatment of purified cytochrome oxidase, which results in the crosslinkage of all of the oxidase protomers except subunit I when ? 20% of the free amines are modified, inhibits ascorbate-N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity. Intermolecular crosslinking of cytochrome oxidase molecules, which results in the formation of large enzyme aggregates displaying rotational correlation times ? 1 ms, does not affect oxidase activity. Crosslinking of mitochondria covalently binds the cytochrome bc1 and aa3 complexes to cytochrome c, and inhibits steady-state oxidase activity. Addition of cytochrome c to purified cytochrome oxidase or to cytochrome c-depleted mitoplasts increases this inhibition slightly. Cytochrome c oligomers act as competitive inhibitors of native cytochrome c; however, crosslinking of cytochrome c to cytochrome c-depleted mitoplasts or purified cytochrome oxidase results in a catalytically inactive complex. These experiments indicate that cytochrome c oxidase subunit interactions are required for activity, and that cytochrome c mobility may be essential for electron transport between cytochrome c reductase and oxidase.  相似文献   

16.
Large assemblies of respiratory chain complexes, known as supercomplexes, are present in the mitochondrial membrane in mammals and yeast, as well as in some bacterial membranes. The formation of supercomplexes is thought to contribute to efficient electron transfer, stabilization of each enzyme complex, and inhibition of reactive oxygen species (ROS) generation. In this study, mitochondria from various organisms were solubilized with digitonin, and then the solubilized complexes were separated by blue native PAGE (BN-PAGE). The results revealed a supercomplex consisting of complexes I, III, and IV in mitochondria from bovine and porcine heart, and a supercomplex consisting primarily of complexes I and III in mitochondria from mouse heart and liver. However, supercomplexes were barely detectable in Drosophila flight-muscle mitochondria, and only dimeric complex V was present. Drosophila mitochondria exhibited the highest rates of oxygen consumption and NADH oxidation, and the concentrations of the electron carriers, cytochrome c and quinone were higher than in other species. Respiratory chain complexes were tightly packed in the mitochondrial membrane containing abundant phosphatidylethanolamine with the fatty acid palmitoleic acid (C16:1), which is relatively high oxidation-resistant as compared to poly-unsaturated fatty acid. These properties presumably allow efficient electron transfer in Drosophila. These findings reveal the existence of a new mechanism of biological adaptation independent of supercomplex formation.  相似文献   

17.
Respiratory chains are crucial for cellular energy conversion and consist of multi‐subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high‐resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.  相似文献   

18.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational “strain” in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

19.
The ubihydroquinone:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important enzyme for photosynthesis and respiration. In bacteria like Rhodobacter capsulatus, this membrane complex has three subunits, the iron?sulfur protein (ISP) with its Fe2S2 cluster, cyt c1 and cyt b, forming two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the electron transfer pathways originating from QH2 oxidation are known, but their associated proton release routes are less well defined. Earlier, we demonstrated that the His291 of cyt b is important for this latter process. In this work, using the bacterial cyt bc1 and site directed mutagenesis, we show that Lys329 of cyt b is also critical for electron and proton transfer at the Qo site. Of the mutants examined, Lys329Arg was photosynthesis proficient and had quasi-wild type cyt bc1 activity. In contrast, the Lys329Ala and Lys329Asp were photosynthesis-impaired and contained defective but assembled cyt bc1. In particular, the bifurcated electron transfer and associated proton(s) release reactions occurring during QH2 oxidation were drastically impaired in Lys329Asp mutant. Furthermore, in silico docking studies showed that in this mutant the location and the H-bonding network around the Fe2S2 cluster of ISP on cyt b surface was different than the wild type enzyme. Based on these experimental findings and theoretical considerations, we propose that the presence of a positive charge at position 329 of cyt b is critical for efficient electron transfer and proton release for QH2 oxidation at the Qo site of cyt bc1.  相似文献   

20.
Pierre Joliot  Anne Joliot 《BBA》2005,1706(3):204-214
The kinetics of reoxidation of the primary acceptor Qa has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 °C, about half of Qa is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The fast phase is associated with the transfer of ubiquinone formed at site Qo of the cytochrome bc1 complex while the slowest phase is associated with the diffusion of ubiquinone present in the membrane prior to the flash excitation. The biphasic kinetics of Qa oxidation is interpreted assuming that the electron chain is organized in supercomplexes that associate two RCs and one cyt bc1 complex, which allows a fast transfer of quinone formed at the level of cyt bc1 complex to the RCs. In agreement with this model, the fast phase of Qa reoxidation is inhibited by myxothiazol, a specific inhibitor of cyt bc1. The PufX-deleted mutant displays only the slowest phase of Qa oxidation; it is interpreted by the lack of supramolecular organization of the photosynthetic chain that leads to a larger average distance between cyt bc1 and RCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号