首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.  相似文献   

2.
Propagation of ryanodine receptor (RyR2)-derived Ca(2+) signals to the mitochondrial matrix supports oxidative ATP production or facilitates mitochondrial apoptosis in cardiac muscle. Ca(2+) transfer likely occurs locally at focal associations of the sarcoplasmic reticulum (SR) and mitochondria, which are secured by tethers. The outer mitochondrial membrane and inner mitochondrial membrane (OMM and IMM, respectively) also form tight focal contacts (contact points) that are enriched in voltage-dependent anion channels, the gates of OMM for Ca(2+). Contact points could offer the shortest Ca(2+) transfer route to the matrix; however, their alignment with the SR-OMM associations remains unclear. Here, in rat heart we have studied the distribution of mitochondria-associated SR in submitochondrial membrane fractions and evaluated the colocalization of SR-OMM associations with contact points using transmission electron microscopy. In a sucrose gradient designed for OMM purification, biochemical assays revealed lighter fractions enriched in OMM only and heavier fractions containing OMM, IMM, and SR markers. Pure OMM fractions were enriched in mitofusin 2, an ~80 kDa mitochondrial fusion protein and SR-mitochondrial tether candidate, whereas in fractions of OMM + IMM + SR, a lighter (~50 kDa) band detected by antibodies raised against the NH(2) terminus of mitofusin 2 was dominating. Transmission electron microscopy revealed mandatory presence of contact points at the junctional SR-mitochondrial interface versus a random presence along matching SR-free OMM segments. For each SR-mitochondrial junction at least one tether was attached to contact points. These data establish the contact points as anchorage sites for the SR-mitochondrial physical coupling. Close coupling of the SR, OMM, and IMM is likely to provide a favorable spatial arrangement for local ryanodine receptor-mitochondrial Ca(2+) signaling.  相似文献   

3.
HD (Huntington's disease) is caused by an expanded polyQ (polyglutamine) repeat in the htt (huntingtin protein). GABAergic medium spiny neurons in the striatum are mostly affected in HD. However, mhtt (mutant huntingtin)-induced molecular changes in these neurons remain largely unknown. The present study focuses on the effect of mhtt on the subcellular localization of GAD (glutamic acid decarboxylase), the enzyme responsible for synthesizing GABA (γ-aminobutyric acid). We report that the subcellular distribution of GAD is significantly altered in two neuronal cell lines that express either the N-terminus of mhtt or full-length mhtt. GAD65 is predominantly associated with the Golgi membrane in cells expressing normal htt; however, it diffuses in the cytosol of cells expressing mhtt. As a result, vesicle-associated GAD65 trafficking is impaired. Since palmitoylation of GAD65 is required for GAD65 trafficking, we then demonstrate that palmitoylation of GAD65 is reduced in the HD model. Furthermore, overexpression of HIP14 (huntingtin-interacting protein 14), the enzyme responsible for palmitoylating GAD65 in vivo, could rescue GAD65 palmitoylation and vesicle-associated GAD65 trafficking. Taken together, our data support the idea that GAD65 palmitoylation is important for the delivery of GAD65 to inhibitory synapses and suggest that impairment of GAD65 palmitoylation by mhtt may lead to altered inhibitory neurotransmission in HD.  相似文献   

4.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH(2)-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH(2)-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.  相似文献   

5.
Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM. This process occurs downstream of the accumulation of cytochrome c/CPOX in a subset of mitochondria heterogeneously distributed throughout the cell (“mosaic distribution”). Formation of mosaic mitochondria, OMM severing, and IMM ubiquitination require active mitochondrial translation and mitochondrial fission, but not the proapoptotic proteins Bax and Bak. In contrast, in Parkin-overexpressing cells, MTF reduction does not lead to the severing of the OMM or IMM ubiquitination, but it does induce Drp1-independent ubiquitination of the OMM. Furthermore, high–cytochrome c/CPOX mitochondria are preferentially targeted by Parkin, indicating that in the context of reduced MTF, they are mitophagy intermediates regardless of Parkin expression. In sum, Parkin-deficient cells adapt to mitochondrial proteotoxicity through a Drp1-mediated mechanism that involves the severing of the OMM and autophagy targeting ubiquitinated IMM proteins.  相似文献   

6.
Gu X  Li C  Wei W  Lo V  Gong S  Li SH  Iwasato T  Itohara S  Li XJ  Mody I  Heintz N  Yang XW 《Neuron》2005,46(3):433-444
Expanded polyglutamine (polyQ) proteins in Huntington's disease (HD) as well as other polyQ disorders are known to elicit a variety of intracellular toxicities, but it remains unclear whether polyQ proteins can elicit pathological cell-cell interactions which are critical to disease pathogenesis. To test this possibility, we have created conditional HD mice expressing a neuropathogenic form of mutant huntingtin (mhtt-exon1) in discrete neuronal populations. We show that mhtt aggregation is a cell-autonomous process. However, progressive motor deficits and cortical neuropathology are only observed when mhtt expression is in multiple neuronal types, including cortical interneurons, but not when mhtt expression is restricted to cortical pyramidal neurons. We further demonstrate an early deficit in cortical inhibition, suggesting that pathological interactions between interneurons and pyramidal neurons may contribute to the cortical manifestation of HD. Our study provides genetic evidence that pathological cell-cell interactions elicited by neuropathogenic forms of mhtt can critically contribute to cortical pathogenesis in a HD mouse model.  相似文献   

7.
Cardiolipin (CL) is a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane (IMM) in eukaryotic cells. Two chiral carbons and four fatty acyl chains in CL result in a flexible body allowing interactions with respiratory chain complexes and mitochondrial substrate carriers. Due to its high content of unsaturated fatty acids, CL is particularly prone to reactive oxygen species (ROS)-induced oxidative attacks. Under mild mitochondrial damage, CL is redistributed to the outer mitochondrial membrane (OMM) and serves as a recognition signal for dysfunctional mitochondria, which are rapidly sequestered by autophagosomes. However, peroxidation of CL is far greater in response to severe stress than under normal or mild-damage conditions. The accumulation of oxidized CL on the OMM results in recruitment of Bax and formation of the mitochondrial permeability transition pore (MPTP), which releases Cytochrome c (Cyt c) from mitochondria. Over the past decade, the significance of CL in the function of mitochondrial bioenergy has been explored. Moreover, approaches to analyzing CL have become more effective and accurate. In this review, we discuss the unique structural features of CL as well as the current understanding of CL-based molecular mechanisms of mitophagy and apoptosis.  相似文献   

8.
Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 N-terminal amino acids of htt have been shown to further modulate aggregation. Additionally, these 17 amino acids appear to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-lengths (35Q, 46Q, 51Q, and myc-53Q) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. Furthermore, the addition of an N-terminal myc-tag to the htt exon1 fragments impeded the interaction of htt with the bilayer.  相似文献   

9.
Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins.  相似文献   

10.
Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.  相似文献   

11.
Calcium spikes established by IP(3) receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) are transmitted effectively to the mitochondria, utilizing local Ca(2+) interactions between closely associated subdomains of the ER and mitochondria. Since the outer mitochondrial membrane (OMM) has been thought to be freely permeable to Ca(2+), investigations have focused on IP(3)-driven Ca(2+) transport through the inner mitochondrial membrane (IMM). Here we demonstrate that selective permeabilization of the OMM by tcBid, a proapoptotic protein, results in an increase in the magnitude of the IP(3)-induced mitochondrial [Ca(2+)] signal. This effect of tcBid was due to promotion of activation of Ca(2+) uptake sites in the IMM and, in turn, to facilitation of mitochondrial Ca(2+) uptake. In contrast, tcBid failed to control the delivery of sustained and global Ca(2+) signals to the mitochondria. Thus, our data support a novel model that Ca(2+) permeability of the OMM at the ER- mitochondrial interface is an important determinant of local Ca(2+) signalling. Facilitation of Ca(2+) delivery to the mitochondria by tcBid may also support recruitment of mitochondria to the cell death machinery.  相似文献   

12.
Hajnóczky G  Csordás G  Yi M 《Cell calcium》2002,32(5-6):363-377
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.  相似文献   

13.
14.
Proteolytic processing of mutant huntingtin (mhtt) is regarded as a key event in the pathogenesis of Huntington's disease (HD). Mhtt fragments containing a polyglutamine expansion form intracellular inclusions and are more cytotoxic than full-length mhtt. Here, we report that two distinct mhtt fragments, termed cp-A and cp-B, differentially build up nuclear and cytoplasmic inclusions in HD brain and in a cellular model for HD. Cp-A is released by cleavage of htt in a 10 amino acid domain and is the major fragment that aggregates in the nucleus. Furthermore, we provide evidence that cp-A and cp-B are most likely generated by aspartic endopeptidases acting in concert with the proteasome to ensure the normal turnover of htt. These proteolytic processes are thus potential targets for therapeutic intervention in HD.  相似文献   

15.
Huntington disease (HD), a neurodegenerative disorder, is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats located near the N-terminus of the huntingtin (htt) protein. The expansion of the polyQ domain results in the ordered assembly of htt fragments into fibrillar aggregates that are the main constituents of inclusion bodies, which are a hallmark of the disease. This paper describes protocols for studying the aggregation of mutant htt fragments and synthetic polyQ peptides with atomic force microscopy (AFM). Ex situ AFM is used to characterize aggregate formation in protein incubation as a function of time. Methods to quickly and unambiguously distinguish specific aggregate species from complex, heterogeneous aggregation reactions based on simple morphological features are presented. Finally, the application of time lapse atomic force microscopy in solution is presented for studying synthetic model polyQ peptides, which allows for tracking the formation and fate of individual aggregates on surfaces over time. This ability allows for dynamic studies of the aggregation process and direct observation of the interplay between different types of aggregates.  相似文献   

16.
Mitochondria possess an outer membrane (OMM) and an inner membrane (IMM), which folds into invaginations called cristae. Lipid composition, membrane potential, and proteins in the IMM influence organization of cristae. Here we show an essential role of the OMM protein Sam50 in the maintenance of the structure of cristae. Sam50 is a part of the sorting and assembly machinery (SAM) necessary for the assembly of β-barrel proteins in the OMM. We provide evidence that the SAM components exist in a large protein complex together with the IMM proteins mitofilin and CHCHD3, which we term the mitochondrial intermembrane space bridging (MIB) complex. Interactions between OMM and IMM components of the MIB complex are crucial for the preservation of cristae. After destabilization of the MIB complex, we observed deficiency in the assembly of respiratory chain complexes. Long-term depletion of Sam50 influences the amounts of proteins from all large respiratory complexes that contain mitochondrially encoded subunits, pointing to a connection between the structural integrity of cristae, assembly of respiratory complexes, and/or the maintenance of mitochondrial DNA (mtDNA).  相似文献   

17.
Mitochondria are responsible for many vital cellular functions in eukaryotic cells, such as ATP production, steroid synthesis and prosthetic group biogenesis. The vital functions of mitochondria are possible due to the compartmental nature of this organelle. Mitochondria form a dynamic network that can exist as a network throughout a cell or as distinct individual structures. Mitochondria are also composed of two membranes, an inner and outer membrane. The inner mitochondrial membrane (IMM) is significantly larger than the outer membrane and must fold upon itself to be contained within the outer mitochondrial membrane (OMM). These folds are known as cristae. Altogether these different membrane compartments specialize in different functions of the mitochondria. The OMM is responsible for passage of small metabolites into and out of the mitochondria while excluding macromolecules. The IMM is a highly selective barrier between the solutes of the cytosol and those within the mitochondrial matrix. Cristae specialize in oxidative phosphorylation. The functions of these membranes are afforded by membrane proteins that are able to transport specific solutes. The appropriate localization, assembly into multi-subunit protein complexes, and wild-type function of these membrane proteins therefore is vital for mitochondria to maintain appropriate function and support cellular survival. This review will address the composition and functions of mitochondrial membrane localized multi-subunit protein complexes along with how these proteins undergo degradation to maintain homeostatic functions of mitochondria in the context of mitochondria specific transporters and ion channels. Due to the large number of known mitochondrial membrane transporters and ion channels this review will focus on the topics presented at the Mitochondrial Ion Channels and Transporters Symposium hosted by the New York University College of Dentistry in September 2015 in honor of Casey Kinnally.  相似文献   

18.
The pathogenesis of Huntington disease (HD) is attributed to the misfolding of huntingtin (htt) caused by an expanded polyglutamine (polyQ) domain. Considerable effort has been devoted to identifying molecules that can prevent or reduce htt misfolding and the associated neuropathology. Although overexpression of chaperones is known to reduce htt cytotoxicity in cellular models, only modest protection is seen with Hsp70 overexpression in HD mouse models. Because the activity of Hsp70 is modulated by co-chaperones, an interesting issue is whether the in vivo effects of chaperones on polyQ protein toxicity are dependent on other modulators. In the present study, we focused on BAG1, a co-chaperone that interacts with Hsp70 and regulates its activity. Of htt mice expressing the N171-82Q mutant, we found that male N171-82Q mice show a greater deficit in rotarod performance than female N171-82Q mice. This sex-dependent motor deficit was improved by crossing N171-82Q mice with transgenic mice overexpressing BAG1 in neurons. Transgenic BAG1 also reduces the levels of mutant htt in synaptosomal fraction of male HD mice. Overexpression of BAG1 augmented the effects of Hsp70 by reducing aggregation of mutant htt in cultured cells and improving neurite outgrowth in htt-transfected PC12 cells. These findings suggest that the effects of chaperones on HD pathology are influenced by both their modulators and sex-dependent factors.  相似文献   

19.
Huntington disease (HD) is caused by expansion of a polyglutamine (polyQ) domain in the protein known as huntingtin (htt), and the disease is characterized by selective neurodegeneration. Expansion of the polyQ domain is not exclusive to HD, but occurs in eight other inherited neurodegenerative disorders that show distinct neuropathology. Yet in spite of the clear genetic defects and associated neurodegeneration seen with all the polyQ diseases, their pathogenesis remains elusive. The present review focuses on HD, outlining the effects of mutant htt in the nucleus and neuronal processes as well as the role of cell-cell interactions in HD pathology. The widespread expression and localization of mutant htt and its interactions with a variety of proteins suggest that mutant htt engages multiple pathogenic pathways. Understanding these pathways will help us to elucidate the pathogenesis of HD and to target therapies effectively.  相似文献   

20.
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expansion of the polyglutamine (polyQ) stretch in huntingtin (htt). Previously, it has been shown that inhibition of the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) activity reduced aggregation of pathogenic polyQ proteins. Experimentally, this effect was achieved by modification of the intracellular IP3 levels or by application of IP3R1 inhibitors, such as 2-aminoethyl diphenylborinate (2-APB). Unfortunately, there are certain concerns about the 2-APB specificity and cytotoxicity. Moreover, a direct link between IP3R1 and polyQ aggregation has not been shown yet. In this study we show, that down-regulation of the IP3R1 levels by shRNA reduced the aggregation of mutant htt. We tested 2-APB analogs in an attempt to identify less toxic and more IP3R1-specific compounds and found that the effect of these analogs on the reduction of the mutant htt aggregation did weakly correlate with their inhibitory action toward the IP3-induced Ca(2+) release (IICR). Their effect on aggregation was not correlated with the store-operated Ca(2+) entry (SOCE), which is another target of the 2-APB related compounds. Our findings suggest that besides functional contribution of the IP3R inhibition on the mutant htt aggregation there are additional mechanisms for the anti-aggregation effect of the 2-APB related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号