首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.  相似文献   

2.
TROP2 is a type I transmembrane glycoprotein originally identified in human trophoblast cells that is overexpressed in several types of cancer. To better understand the role of TROP2 in cancer, we herein aimed to develop a sensitive and specific anti-TROP2 monoclonal antibody (mAb) for use in flow cytometry, Western blot, and immunohistochemistry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with N-terminal PA-tagged and C-terminal RAP/MAP-tagged TROP2-overexpressed Chinese hamster ovary (CHO)–K1 cells (CHO/PA-TROP2-RAP-MAP), and hybridomas showing strong signals from PA-tagged TROP2-overexpressed CHO–K1 cells (CHO/TROP2-PA) and weak-to-no signals from CHO–K1 cells were selected using flow cytometry. We demonstrated using flow cytometry that the established anti-TROP2 mAb, TrMab-29 (mouse IgG1 kappa), detected TROP2 in MCF7 breast cancer cell line as well as CHO/TROP2-PA cells. Western blot analysis showed a 40 kDa band in lysates prepared from both CHO/TROP2-PA and MCF7 cells. Furthermore, TROP2 was strongly detected by immunohistochemical analysis using TrMab-29, indicating that TrMab-29 may be a valuable tool for the detection of TROP2 in cancer.  相似文献   

3.
Saccharomyces cerevisiae is a versatile microbial platform to build synthetic metabolic pathways for production of diverse chemicals. To expedite the construction of complex metabolic pathways by multiplex CRISPR-Cas9 genome-edit, eight desirable intergenic loci, located adjacent to highly expressed genes selected from top 100 expressers, were identified and fully characterized for three criteria after integrating green fluorescent protein (GFP) gene - CRISPR-mediated GFP integration efficiency, expression competency assessed by levels of GFP fluorescence, and assessing growth rates of GFP integrated strains. Five best performing intergenic loci were selected to build a multiplex CRISPR platform, and a synthetic 23-bp DNA comprised of 20-bp synthetic DNA with a protospacer adjacent motif (PAM) was integrated into the five loci using CRISPR-Cas9 in a sequential manner. This process resulted in five different yeast strains harbouring 1–5 synthetic gRNA-binding sites in their genomes. Using these pre-engineered yeast strains, simultaneous integrations of 2-, 3-, 4-, or 5-genes to the targeted loci were demonstrated with efficiencies from 85% to 98% using beet pigment betalain (3-gene pathway), hygromycin and geneticin resistance markers. Integrations of the multiple, foreign genes in the targeted loci with 100% precision were validated by genotyping. Finally, we further developed the strain to have 6th synthetic gRNA-binding site, and the resulting yeast strain was used to generate a yeast strain producing a sesquiterpene lactone, kauniolide by simultaneous 6-gene integrations. This study demonstrates the effectiveness of a single gRNA-mediated CRISPR platform to build complex metabolic pathways in yeast.  相似文献   

4.
Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the in vitro safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain. The results obtained from these two advanced models of human respiratory tract epithelia confirm previous findings from in vitro SARS-CoV-2 infection assays and demonstrate that topically applied IC can effectively prevent SARS-CoV-2 infection and replication. Moreover, the absence of toxicity and functional and structural impairment of the mucociliary epithelium demonstrates that the nebulized IC is well tolerated.  相似文献   

5.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a cytosine–guanine–guanine repeat expansion neurological disease that occurs in a subset of aging carriers of the premutation (55–200 cytosine–guanine–guanine repeats) in the FMR1 gene located on the X chromosome. The clinical core involves intention tremor and gait ataxia. Current research seeks to clarify the pathophysiology and neuropathology of FXTAS, as well as the development of useful biomarkers to track the progression of FXTAS. Efforts to implement quantitative measures of clinical features, such as kinematics and cognitive measures, are of special interest, in addition to characterize the differences in progression in males compared with females and the efficacy of new treatments.  相似文献   

6.
Osteosarcoma is one of the commonest metastatic tumor in children and teenagers, and has a hopeless, prognosis. Long non-coding RNA (lncRNA) acts momentous roles as a regulator on the proliferation and migration of cancer. Here, we performed GEO database analysis and qPCR to identify differentially expressed lncRNAs in osteosarcoma cells. Knockdown of lncRNA LINC01140 was used to detect the effect of LINC01140 on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. Bioinformatics analysis and qPCR identified the LINC01140/miR-139-5p/Homeobox A9 (HOXA9) regulatory axis. RNA immunoprecipitation assay, Dual-luciferase assay, and rescue experiments confirmed the interaction of LINC01140/miR-139-5p/HOXA9 in osteosarcoma. LINC01140 was overexpressed in osteosarcoma and knocking down LINC01140 restrained the proliferation and invasion of osteosarcoma cells and EMT. In Saos2 and MG63 cells, LINC01140 sponged miR-139-5p, and a miR-139-5p inhibitor overturned the suppression of LINC01140 knockdown on the proliferation and migration of osteosarcoma cells. Moreover, miR-139-5p depressed the invasion, proliferation, and EMT of osteosarcoma cells via targeting HOXA9. Our results indicate that LINC01140 downregulation inhibits the invasion, proliferation, and EMT in osteosarcoma cells through targeting the miR-139-5p/HOXA9 axis. Therefore, LINC01140 is a potential therapeutic target for osteosarcoma.  相似文献   

7.
Plant reproduction is an extremely important phenomenon, as it is strongly associated with plant genetics and early development. Additionally, foundations of the reproductive system have direct implications on plant breeding and agriculture. Investigation of the functions of male and female gametophytes is critical since their fusion is required for seed formation. Although a large number of mutants have been generated to understand the functions of male and female gametophytes, only a small number of genes required for plant fertilization have been identified to date. This is because the screening method used previously required the dissection of siliques, and fertilization-specific mutants exhibiting semi-fertility (or ∼50% fertility) were difficult to identify. Here, we report a new efficient screening method for the identification of fertilization defective mutants in Arabidopsis thaliana using vanillin staining. This method is based on the pollen tube-dependent ovule enlargement morphology (POEM) phenomenon, which generates a partial seed coat within the ovule without fertilization. Using this method, we successfully identified 23 putative fertilization defective mutants in Arabidopsis.  相似文献   

8.
Plant polyphenols have been extensively studied for their chemopreventive properties for human health. Dextransucrase plays an essential role in synthesizing exopolysaccharides from its exclusive substrate sucrose in Streptococcus mutans. In the present study, the effect of polyphenols gallic acid and tannic acid was investigated on the dextransucrase activity. The enzyme was purified by ethanol precipitation followed by column chromatography by Sephadex G-200 gel chromatography, followed by PEG-400 treatment. The purified enzyme exhibited 52 fold enrichment with 17.5% yield and specific activity of 3.54 Units/mg protein. On SDS-PAGE enzyme protein gave a single band with a molecular weight of 160 kDa. Dextransucrase activity was inhibited 80–90% by 0.04 mM tannic acid (TA) or 0.4 mM gallic acid (GA) suggesting that tannic acid has 10- fold more inhibitory potential than gallic acid on the activity of dextransucrase. CD/ORD studies revealed modifications in the tertiary structure of enzyme protein in presence of tannic acid and gallic acid, which were further confirmed by fluorescence spectra of the protein in presence of tannic acid. These results suggest that inhibition of dextransucrase activity in S. mutans by polyphenols may have potential applications in the prevention and control of dental caries.  相似文献   

9.
Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion). In particular, p-ions that dissociate further into one or more fragment ions can dominate HCD spectra but are not recognized by standard spectral annotation workflows. As a result, annotation strategies that are solely reliant upon the b/y-ions result in lower spectral scores that in turn reduce the number of reportable ADPr peptides. To improve the confidence of spectral assignments, we implemented an ADPr peptide annotation and scoring strategy. All MS2 spectra are scored for the ADPr m-ions, but once spectra are assigned as an ADPr peptide, they are further annotated and scored for the p-ions. We implemented this novel workflow to ADPr peptides enriched from the liver and spleen isolated from mice post 4 h exposure to systemic IFN-γ. HCD collision energy experiments were first performed on the Orbitrap Fusion Lumos and the Q Exactive, with notable ADPr peptide dissociation properties verified with CID (Lumos). The m-ion and p-ion series score distributions revealed that ADPr peptide dissociation properties vary markedly between instruments and within instrument collision energy settings, with consequences on ADPr peptide reporting and amino acid localization. Consequentially, we increased the number of reportable ADPr peptides by 25% (liver) and 17% (spleen) by validation and the inclusion of lower confidence ADPr peptide spectra. This systematic annotation strategy will streamline future reporting of ADPr peptides that have been sequenced using any HCD/CID-based method.  相似文献   

10.
IntroductionBreastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells.Material and methodsThe human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure.ResultsThe human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 μg/mL and 4.28 μg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-β, VE-cadherin, and caspase.ConclusionThe human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -β was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis.  相似文献   

11.
Single cell metabolomics is a rapidly advancing field of bio-analytical chemistry which aims to observe cellular biology with the greatest detail possible. Mass spectrometry imaging and selective cell sampling (e.g. using nanocapillaries) are two common approaches within the field. Recent achievements such as observation of cell–cell interactions, lipids determining cell states and rapid phenotypic identification demonstrate the efficacy of these approaches and the momentum of the field. However, single cell metabolomics can only continue with the same impetus if the universal challenges to the field are met, such as the lack of strategies for standardisation and quantification, and lack of specificity/sensitivity. Mass spectrometry imaging and selective cell sampling come with unique advantages and challenges which, in many cases are complementary to each other. We propose here that the challenges specific to each approach could be ameliorated with collaboration between the two communities driving these approaches.  相似文献   

12.
Current cerebral organoid technology provides excellent in vitro models mimicking the structure and function of the developing human brain, which enables studies on normal and pathological brain; however, further improvements are necessary to overcome the problems of immaturity and dearth of non-parenchymal cells. Vascularization is one of the major challenges for recapitulating processes in the developing human brain. Here, we examined the formation of blood vessel-like structures in cerebral organoids induced by vascular endothelial growth factor (VEGF) in vitro. The results indicated that VEGF enhanced differentiation of vascular endothelial cells (ECs) without reducing neuronal markers in the embryonic bodies (EBs), which then successfully developed into cerebral organoids with open-circle vascular structures expressing an EC marker, CD31, and a tight junction marker, claudin-5, characteristic of the blood-brain barrier (BBB). Further treatment with VEGF and Wnt7a promoted the formation of the outer lining consisting of pericyte-like cells, which surrounded the vascular tubes. RNA sequencing revealed that VEGF upregulated genes associated with tube formation, vasculogenesis, and the BBB; it also changed the expression of genes involved in brain embryogenesis, suggesting a role of VEGF in neuronal development. These results indicate that VEGF treatment can be used to generate vessel-like structures with mature BBB characteristics in cerebral organoids in vitro.  相似文献   

13.
LPL is a key player in plasma triglyceride metabolism. Consequently, LPL is regulated by several proteins during synthesis, folding, secretion, and transport to its site of action at the luminal side of capillaries, as well as during the catalytic reaction. Some proteins are well known, whereas others have been identified but are still not fully understood. We set out to study the effects of the natural variations in the plasma levels of all known LPL regulators on the activity of purified LPL added to samples of fasted plasma taken from 117 individuals. The enzymatic activity was measured at 25°C using isothermal titration calorimetry. This method allows quantification of the ability of an added fixed amount of exogenous LPL to hydrolyze triglyceride-rich lipoproteins in plasma samples by measuring the heat produced. Our results indicate that, under the conditions used, the normal variation in the endogenous levels of apolipoprotein C1, C2, and C3 or the levels of angiopoietin-like proteins 3, 4, and 8 in the fasted plasma samples had no significant effect on the recorded activity of the added LPL. Instead, the key determinant for the LPL activity was a lipid signature strongly correlated to the average size of the VLDL particles. The signature involved not only several lipoprotein and plasma lipid parameters but also apolipoprotein A5 levels. While the measurements cannot fully represent the action of LPL when attached to the capillary wall, our study provides knowledge on the interindividual variation of LPL lipolysis rates in human plasma.  相似文献   

14.
The classical models of investigating Shigella flexneri adherence and invasion of tissue culture cells involve either bacterial centrifugation (spinoculation) or the use of AfaE adhesin to overcome the low infection rate observed in vitro. However clinically, S. flexneri clearly adheres and invades the human colon in the absence of ‘spinoculation’. Additionally, certain S. flexneri tissue cell based assays (e.g. plaque assays and infection of T84 epithelial cells on Transwells®), do not require spinoculation. In the absence of spinoculation, we recently showed that glycan-glycan interactions play an important role in S. flexneri interaction with host cells, and that in particular the S. flexneri 2a lipopolysaccharide O antigen glycan has a high affinity for the blood group A glycan. During the investigation of the effect of blood group A antibodies on S. flexneri interaction with cells, we discovered that Panc-1 cells exhibited a high rate of infection in the absence of spinoculation. Select blood group A antibodies inhibited invasion of Panc-1 cells, and adherence to T84 cells. The use of Panc-1 cells represents a simplified model to study S. flexneri pathogenesis and does not require either spinoculation or exogenous adhesins.  相似文献   

15.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

16.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

17.
KU70 (XRCC6 gene in humans) is one of the proteins in the KU70-KU80 heterodimer which is the first component recruited to broken DNA ends during DNA double-strand break repair through nonhomologous end joining (NHEJ). Previous studies have shown that Ku70 deficient mouse cells are defective in NHEJ and V(D)J recombination. In contrast, heterozygous KU70 mutant human cell lines did not show any significant change in cell viability and sensitivity towards ionizing radiation. In this study, we used CRISPR-Cas9 technique to generate a KU70 mutant (heterozygous) human pre-B leukemic cell line (N6-KU70–2-DG). We observed that the N6-KU70–2-DG cells showed a prominent reduction in the expression of both KU70 mRNA and protein. The mutant cells showed reduced cell viability, increased sensitivity to DSB inducing agents such as ionizing radiation (IR) and etoposide, and increased number of unrepaired DSBs after exposure to IR. In addition, the mutant cells showed a reduction in the NHEJ activity and increased rate of microhomology mediated joining (MMEJ) activity. KU70 mutant cells also revealed enhanced level of senescence markers following irradiation. Thus, we report a novel KU70-mutant leukemic cell line (heterozygous) with reduced NHEJ, which is sensitive to DNA damaging agents, unlike the previously reported other KU heterozygous mutant cell lines.  相似文献   

18.
《Endocrine practice》2023,29(3):155-161
ObjectivePatients hospitalized with COVID-19 and hyperglycemia require frequent glucose monitoring, usually performed with glucometers. Continuous glucose monitors (CGMs) are common in the outpatient setting but not yet approved for hospital use. We evaluated CGM accuracy, safety for insulin dosing, and CGM clinical reliability in 20 adult patients hospitalized with COVID-19 and hyperglycemia.MethodsStudy patients were fitted with a remotely monitored CGM. CGM values were evaluated against glucometer readings. The CGM sensor calibration was performed if necessary. CGM values were used to dose insulin, without glucometer confirmation.ResultsCGM accuracy against glucometer, expressed as mean absolute relative difference (MARD), was calculated using 812 paired glucometer-CGM values. The aggregate MARD was 10.4%. For time in range and grades 1 and 2 hyperglycemia, MARD was 11.4%, 9.4%, and 9.1%, respectively, with a small variation between medical floors and intensive care units. There was no MARD correlation with mean arterial blood pressure levels, oxygen saturation, daily hemoglobin levels, and glomerular filtration rates. CGM clinical reliability was high, with 99.7% of the CGM values falling within the “safe” zones of Clarke error grid. After CGM placement, the frequency of glucometer measurements decreased from 5 to 3 and then 2 per day, reducing nurse presence in patient rooms and limiting viral exposure.ConclusionWith twice daily, on-demand calibration, the inpatient CGM use was safe for insulin dosing, decreasing the frequency of glucometer fingersticks. For glucose levels >70 mg/dL, CGMs showed adequate accuracy, without interference from vital and laboratory values.  相似文献   

19.
Influenza is an acute respiratory disease and a global health problem. Although influenza vaccines are commercially available, frequent antigenic changes in hemagglutinin might render them less effective or unavailable. We previously reported that modified outer membrane vesicle (fmOMV) provided immediate and robust protective immunity against various subtypes of influenza virus. However, the effect was transient because it was innate immunity-dependent. In this study, we investigated the effects of consecutive administration of fmOMV and influenza virus on the adaptive immune response and long-term protective immunity against influenza virus. When the mice were pretreated with fmOMV and subsequently infected with influenza virus, strong influenza-specific antibody and T cell responses were induced in both systemic and lung mucosal compartments without pathogenic symptoms. Upon the secondary viral challenge at week 4, the mice given fmOMV and influenza virus exhibited almost complete protection against homologous and heterologous viral challenge. More importantly, this strong protective immunity lasted up to 18 weeks after the first infection. These results show that pretreatment with fmOMV and subsequent infection with influenza virus efficiently induces broad and long-lasting protective immunity against various virus subtypes, suggesting a novel antiviral strategy against newly-emerging viral diseases without suitable vaccines or therapeutics.  相似文献   

20.
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号