首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3T and D11-58, and D1-19T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM 18921T = ATCC BAA-1447T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19T = DSM 18938T = ATCC BAA-1446T).  相似文献   

2.
A Gram-negative aerobic bacterium, designated RR4-38T, was isolated from a biofilter in a seawater recirculating aqua-culture system (RAS) in Busan, South Korea. The bacteria were irregular, short, rod-shaped, non-motile, oxidase-positive, and catalase-negative. Growth of the strain RR4-38T was observed at 15–35·C (optimum, 25–30·C), pH 5.5–9.5 (optimum, pH 8.0), and in the presence of 0–5% (w/v) NaCl (optimum, 3%). Phylogenetic analysis based on the 16S rRNA gene sequences showed that the strain RR4-38T formed a distinct lineage with close genera Ulvibacter (≤ 95.01% 16S rRNA gene sequence similarity), Aureitalea (94.74%), Aureisphaera (≤ 93.27%), and Jejudonia (93.07%) that all belong to the family Flavobacteriaceae. Whole-genome sequence comparison revealed that the ANI (average nucleotide identity) and digital DDH (DNA-DNA hybridization) values between strain RR4-38T and the two closest strains, Ulvibacter antarcticus DSM 23424T and Aureitalea marina S1-66T, were 68.96–69.88% and 17.4–19%, respectively. The genome analysis revealed that the strain might be involved in biodegradation of organic debris produced by farmed fish in aquaculture systems. The predominant respiratory quinone was menaquinone MK-6 and the major cellular fatty acids were iso-C15:0 (26.5%), iso-C17:0 3-OH (16.4%), iso-C15:1 G (15%), and iso-C16:0 3-OH (9.6%). The major cellular polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, unidentified aminolipids, and glycolipids. Based on phenotypic, chemotaxonomic, and phylogenetic features, strain RR4-38t represents a novel genus and species in the family Flavobacteriaceae, for which the name Pukyongia salina gen. nov., sp. nov. is proposed. The type strain is RR4-38T (= KCTC 52651T = DSM 108068T).  相似文献   

3.
A bacterial strain, designated JS5-2T, was isolated from soil collected from Jeju Island, Republic of Korea. The cells of the strain were Gram-negative, nonspore forming, catalase- and oxidase-positive, aerobic, nonmotile and rod-shaped. Strain JS5-2T exhibited 96.2–97.2, 95.1–96.3, and 95.4–95.8% 16S rRNA gene sequence similarities to the genera Herbaspirillum, Oxalicibacterium, and Herminiimonas, respectively. The highest sequence similarities were with Herbaspirillum autotrophicum IAM 14942T (97.2%) and Herbaspirillum frisingense GSF30T (97.1%). The major fatty acids of strain JS5-2T were C16:0 (35.0%), C17:0 cyclo (19.9%), C18:1 ω7c (11.4%), and summed feature 3 (C16:1 ω7c/C15:0 iso 2-OH) (15.2%), and the major polar lipids of strain JS5-2T were diphosphatidylglycerol and an unknown aminophospholipid. The strain contained Q-8 as the predominant ubiquinone. DNA-DNA relatedness values between strain JS5-2T and H. autotrophicum IAM 14942T, and H. frisingense GSF30T were 32 and 35%, respectively. The DNA G+C content of strain JS5-2T was 59.0 mol%. On the basis of phenotypic, genotypic, and physiological evidence, strain JS5-2T represents a novel species of a new genus, for which the name Paraherbaspirillum soli gen. nov., sp. nov. is proposed. The type strain JS5-2T (=KACC 12633T =NBRC 106496T) is proposed.  相似文献   

4.
A Gram-negative bacterium was previously isolated from an oil field in Shizuoka, Japan, and designated strain HD-1. Here we have performed detailed characterization of the strain, and have found that it represents a novel genus. The 16S rRNA sequence of strain HD-1 displayed highest similarity to various uncultured species (86.7-99.7%), along with 86.2-88.2% similarity to sequences from Azospirillum, Methylobacterium, Rhizobium, and Hyphomicrobium, all members of the alpha-Proteobacteria. Phylogenetic analysis revealed that HD-1 represented a deep-branched lineage among the alpha-Proteobacteria. DNA-DNA hybridization analysis with Azospirillum lipoferum and Hyphomicrobium vulgare revealed low levels of similarity among the strains. We further examined the biochemical properties of the strain under aerobic conditions. Among carbon sources, ethanol, n-propanol, n-butanol, and n-tetradecanol were the most preferred, while acetate, propionate, and pyruvate also supported high levels of growth. The strain could also grow on aromatic compounds such as toluene, benzene and phenol, and aliphatic hydrocarbons such as n-octane and n-tetradecane. In contrast, glycerol and various sugars, including glucose, fructose, maltose, and lactose, failed to support growth of HD-1. Under an anaerobic gas phase with butanol as the carbon source, little increase in cell weight was observed with the addition of several possible electron acceptors. As strain HD-1 represents a novel genus in the alpha-Proteobacteria, we designated the strain as Oleomonas sagaranensis gen. nov., sp. nov., strain HD-1.  相似文献   

5.
A Gram-negative, non-motile and rod-shaped bacterial strain, designated RA2-3T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South Sea, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain RA2-3T was observed to grow optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Strain RA2-3T exhibited the highest 16S rRNA gene sequence similarity values to the type strains of Litoreibacter meonggei (95.7 %), Planktotalea frisia (95.6 %), Thalassobius gelatinovorus (95.5 %) and Pelagicola litoralis (95.4 %). A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain RA2-3T clustered with the type strains of Planktotalea frisia, Pelagicola litoralis, Pacificibacter maritimus and Roseovarius marinus. Strain RA2-3T was found to contain Q-10 as the predominant ubiquinone and C18:1 ω7c as the major fatty acid. The major polar lipids detected in strain RA2-3T were phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain RA2-3T was 52.9 mol%. On the basis of the phylogenetic, chemotaxonomic and phenotypic properties, strain RA2-3T is considered to represent a new genus and species within the family Rhodobacteraceae, for which the name Halocynthiibacter namhaensis gen. nov., sp. nov. is proposed. The type strain of H. namhaensis is RA2-3T (=KCTC 32362T=NBRC 109999T).  相似文献   

6.
Two bacterial strains, KIS66-7T and 5GH26-15T, were isolated from soil samples collected in the South Korean cities of Tongyong and Gongju, respectively. Both strains were aerobic, Gram-stain-positive, mesophilic, flagellated, and rodshaped. A phylogenetic analysis revealed that both strains belonged to the family Microbacteriaceae of the phylum Actinobacteria. The 16S rRNA gene sequence of strain KIS66-7T had the highest similarities with those of Labedella gwakjiensis KSW2-17T (97.3%), Cryobacterium psychrophilum DSM 4854T (97.2%), Leifsonia lichenia 2SbT (97.2%), Leifsonia naganoensis JCM 10592T (97.0%), and Cryobacterium mesophilum MSL-15T (97.0%). Strain 5GH26-15T showed the highest sequence similarities with Leifsonia psychrotolerans LI1T (97.4%) and Schumannella luteola KHIAT (97.1%). The 16S rRNA gene sequence from KIS66-7T exhibited 96.4% similarity with that from 5GH26-15T. Strain KIS66-7T contained a B2γ type peptidoglycan structure with D-DAB as the diamino acid; MK-13, MK-12, and MK-14 as the respiratory quinones; ai-C15:0, ai-C17:0, and i-C16:0 as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Strain 5GH26-15T had a B2β type peptidoglycan structure with D-DAB as the diamino acid; MK-14 and MK-13 as the respiratory quinones; ai-C15:0, i-C16:0, and ai-C{vn17:0} as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Both strains had low DNA-DNA hybridization values (<40%) with closely related taxa. Based on our polyphasic taxonomic characterization, we propose that strains KIS66-7T and 5GH26-15T represent novel genera and species, for which we propose the names Diaminobutyricibacter tongyongensis gen. nov., sp. nov. (type strain KIS66-7T=KACC 15515T=NBRC 108724T) and Homoserinibacter gongjuensis gen. nov., sp. nov. (type strain 5GH26-15T=KACC 15524T=NBRC 108755T) within the family Microbacteriaceae.  相似文献   

7.
An obligately aerobic bacterium, strain KOPRI 20902T, was isolated from a marine sediment in Ny-Arlesund, Spitsbergen Islands, Norway. Cells were irregular rods and motile with polar monotrichous flagellum. The optimum growth temperature was 17-22 degrees . Cells grew best in pH 7.0-10.0 and 3-4% sea salts (corresponding to 2.3-3.1% NaCl). The novel strain required Ca2+ or Mg2+ in addition to NaCl for growth. Sequence analysis of 16S rRNA gene revealed that the Arctic isolate is distantly related with established species (<92.4% sequence similarity) and formed a monophyletic group with Cellvibrio, which formed a distinct phylogenetic lineage in the order Pseudomonadales. Predominant cellular fatty acids [C16:1 omega7c/15:0 iso 2OH (45.3%), C16:0 (18.4%), ECL 11.799 (11.2%), C10:0 3OH (10.4%)]; DNA G+C content (37.0 mol%); nitrate reduction to nitrogen; absence of aesculin hydrolysis, N-acetyl-beta-glucosaminidase and esterase; no assimilation of arabinose, galactose, glucose, lactose, maltose, and trehalose differentiated the strain from the genus Cellvibrio. Based on the phylogenetic and phenotypic characteristics, Dasania marina gen. nov., sp. nov. is proposed in the order Pseudomonadales. Strain KOPRI 20902T (=KCTC 12566T=JCM 13441T) is the type strain of Dasania marina.  相似文献   

8.
Mycoplasmas isolated from the throats of lions were shown to belong to three serotypes, all of which were serologically distinct from the previously recognized Mycoplasma and Acholeplasma spp. Eight mycoplasma colonies were cloned, including one from a leopard (strain LP), and were examined in detail for morphology, growth, and biochemical characteristics. The strains had the following properties: guanine-plus-cytosine contents of 37 mol% (strain LXT [T = type strain]), 28 mol% (strain LL2T), and 27 mol% (strain 3L2T) and a requirement for sterol. Strain 3L2T metabolized glucose, which was not metabolized by strains LXT and LL2T. Arginine and urea were not hydrolyzed. Strain LX (= NCTC 11724) is the type strain of a new species, Mycoplasma simbae; strain LL2 (= NCTC 11725) is the type strain of a second new species, Mycoplasma leopharyngis; and strain 3L2 (= NCTC 11726) is the type strain of a third new species, Mycoplasma leocaptivus.  相似文献   

9.
On the basis of phenotypic properties and G+C content of DNA, as well as competitive DNA-DNA hybridization and extracellular polymeric substance analysis it was shown that this strain was completely different from all other alkaliphilic bacteria. We hereby propose that this strain be designatedAlkalobacter lublini gen. nov., sp. nov.  相似文献   

10.
Two extremely halophilic archaeal strains GX3(T) and GX26(T) were isolated from the Gangxi marine solar saltern near the Weihai city of Shandong Province, China. Cells from the two strains were pleomorphic and stained Gram-negative, colonies were red-pigmented. Strains GX3(T) and GX26(T) were able to grow at 25-50 °C (optimum 37 °C), at 1.4-5.1M NaCl (optimum 3.1M), at pH 5.5-9.5 (optimum pH 7.0) and neither strain required Mg(2+) for growth. Cells lyse in distilled water and the minimal NaCl concentration to prevent cell-lysis was 8% (w/v). The major polar lipids of the two strains were PA (phosphatidic acid), PG (phosphatidylglycerol), PGP-Me (phosphatidylglycerol phosphate methyl ester) and three major glycolipids (GL1, GL2 & GL3) chromatographically identical to S-TGD-1 (sulfated galactosyl mannosy glucosyl diether), S-DGD-1 (sulfated mannosyl glucosyl diether), and DGD-1 (mannosyl glucosyl diether) respectively, an unidentified lipid (GL4) was also detected in strain GX26(T). Phylogenetic analysis based on 16S rRNA gene revealed that strain GX3(T) and strain GX26(T) formed a distinct clade with the closest relative, Haladaptatus paucihalophilus (89.9-92.4% and 90.4-92.7, respectively). The rpoB' gene similarities between strains GX3(T) and GX26(T), and between the two strains and the closest relative, Halorussus rarus TBN4(T) are 96.5%, 84.3% and 83.9%, respectively. The DNA G+C contents of strain GX3(T) and strain GX26(T) are 67.3 mol% and 67.2 mol%, respectively. The DNA-DNA hybridization value between strain GX3(T) and strain GX26(T) was 44%. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX3(T) and strain GX26(T) represent two novel species in a new genus within the family Halobacteriaceae, Halorubellus salinus gen. nov., sp. nov. (type strain GX3(T)=CGMCC 1.10384(T)=JCM 17115(T)) and Halorubellus litoreus sp. nov. (type strain GX26(T)=CGMCC 1.10386(T)=JCM 17117(T)).  相似文献   

11.
A Gram-stain-negative, rod-shaped, obligately aerobic, nonflagellated, and chemoheterotrophic bacterium, designated IMCC3088T, was isolated from coastal seawater of the Yellow Sea. The 16S rRNA gene sequence analysis indicated that this strain belonged to the family Halieaceae which shared the highest sequence similarities with Luminiphilus syltensis NOR5-1BT (94.5%) and Halioglobus pacificus S1-72T (94.5%), followed by 92.3–94.3% sequence similarities with other species within the aforementioned family. Phylogenetic analyses demonstrated that strain IMCC3088T was robustly clustered with Luminiphilus syltensis NOR5-1BT within the family Halieaceae. However, average amino acid identity (AAI), percentages of conserved proteins (POCP), average nucleotide identity (ANI), and alignment fraction (AF) between strain IMCC3088T and Luminiphilus syltensis NOR5-1BT were 54.5%, 47.7%, 68.0%, and 16.5%, respectively, suggesting that they belonged to different genera. Whole-genome sequencing of strain IMCC3088T revealed a 3.1 Mbp genome size with a DNA G + C content of 51.7 mol%. The genome encoded diverse metabolic pathways including sulfur oxidation, phenol degradation, and proteorhodopsin phototrophy. Mono-unsaturated fatty acids were found to be the predominant cellular fatty acid components in the strain. Phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were the primarily identified polar lipids, and ubiquinone-8 was identified as a major respiratory quinone. The taxonomic data collected herein suggested that strain IMCC3088T represented a novel genus and species of the family Halieaceae, for which the name Aequoribacter fuscus gen. nov., sp. nov. is proposed with the type strain (= KACC 15529T = NBRC 108213T).  相似文献   

12.
A strictly aerobic, Gram-negative, reddish-orange pigmented, non-motile and rod-shaped bacterium, designated AK17-053T was isolated from a marine crustacean (Squillidae) living on tidal flats on the coast of the Ariake Sea, Nagasaki, Japan. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the novel isolate could be affiliated with the family Saprospiraceae of the phylum Bacteroidetes and that it showed highest sequence similarity (84%) with Lewinella marina MKG-38T. The strain could be differentiated phenotypically from recognized members of the family Saprospiraceae. The G+C content of DNA was 55.3 mol%, MK-7 was the major menaquinone and iso-C15:0 and C16:1ω7c were the major fatty acids. On the basis of polyphasic taxonomic studies, it was concluded that strain AK17-053T represents a new genus of the family Saprospiraceae. We propose the name Rubidimonas crustatorum gen. nov., sp. nov. for this strain; its type strain is AK17-053T (= MBIC08356T = NBRC 107717T).  相似文献   

13.
A novel aerobic, Gram-negative bacterial strain, designated KU41E(T), which degrades p-n-nonylphenol, was isolated from seawater obtained from the coastal region of Ishigaki Island, Japan. Cells are motile, curved rods with a single polar flagellum. Strain KU41E(T) grew at 20-35 °C, pH 7.0-8.0, in the presence of 1.0-4.0% NaCl. The predominant respiratory lipoquinone was ubiquinone-8, and the major cellular fatty acids were summed feature 3 (C(15:0) iso 2OH and/or C(16:1) ω7c, 28.4%), C(18:1) ω7c (19.8%), and C(16:0) (17.0%). The DNA G + C content was 48.6 mol%. The 16S rRNA gene sequence analysis indicated that strain KU41E(T) is affiliated with the order Alteromonadales within the class Gammaproteobacteria and is most closely related to Pseudoteredinibacter isoporae SW-11(T) (93.6% similarity) and Teredinibacter turnerae T7902(T) (91.9% similarity). On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU41E(T) is suggested to represent a novel species of a new genus, for which the name Maricurvus nonylphenolicus gen. nov., sp. nov. is proposed. The type strain of M. nonylphenolicus is KU41E(T) (=JCM 17778(T)).  相似文献   

14.
A novel endophytic actinomycete, designated strain NEAU-J3T, was isolated from soybean root (Glycine max (L.) Merr) and characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain NEAU-J3T fell within the family Micromonosporaceae. The strain was observed to form an extensively branched substrate mycelium, which carried non-motile oval spores with a smooth surface. The cell walls of strain NEAU-J3T were determined to contain meso-diaminopimelic acid and galactose, ribose and glucose were detected as whole-cell sugars. The major menaquinones were determined to be MK-9(H4) and MK-9(H6). The phospholipids detected were phosphatidylcholine and phosphatidylethanolamine. The major cellular fatty acids were determined to be C16:0, C18:1 ω9c, C18:0, C17:0, C17:1 ω7c, anteiso-C17:0, C16:1 ω7c and C15:0. The DNA G + C content was 62.5 mol%. On the basis of the morphological and chemotaxonomic characteristics, phylogenetic analysis and characteristic patterns of 16S rRNA gene signature nucleotides, strain NEAU-J3T is considered to represent a novel species of a new genus within the family Micromonosporaceae, for which the name Wangella harbinensis gen. nov., sp. nov. is proposed. The type strain of Wangella harbinensis is strain NEAU-J3T (=CGMCC 4.7039T = DSM 45747T).  相似文献   

15.
A Gram-negative, strictly aerobic, reddish-pink pigmented, motile, spherical, agar-degrading bacterium designated 06SJR6-2T was isolated from a green coloured marine alga (Cladophora sp.). Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain was affiliated with the class Phycisphaerae and shared 89.2 % sequence similarity with Phycisphaera mikurensis FYK2301M01T, which is the only validly named member of the class Phycisphaerae. The strain could be differentiated phenotypically from the recognised member of the class Phycisphaerae. The major fatty acids of strain 06SJR6-2T were identified as C16:0, C18:1ω9c and anteiso-C15:0. Amino acid analysis of cell wall hydrolysates indicated that the novel isolate did not contain diaminopimelic acid in the cell wall. The DNA G+C content of the strain was determined to be 63.0 mol% and the major respiratory quinone was identified as menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel genus in the family Phycisphaeraceae, for which the name Algisphaera agarilytica gen. nov., sp. nov. is proposed. The type strain of A. agarilytica is 06SJR6-2T (=KCTC 32482T = NBRC 109894T).  相似文献   

16.
Two anaerobic bacteria involved in the conversion of the plant lignan secoisolariciresinol diglucoside were isolated from faeces of a healthy male adult. The first isolate, strain SDG-Mt85-3Db, was a mesophilic strictly anaerobic Gram-positive helically coiled rod. Based on 16S r RNA gene sequence analysis, its nearest relatives were Clostridium cocleatum (96.7% similarity) and Clostridium ramosum (96.6%). In contrast to these species, the isolate was devoid of alpha-galactosidase and -glucosidase and did not grow on maltose, melibiose, raffinose, rhamnose and trehalose. The hypothesis that strain SDG-Mt85-3Db represents a new bacterial species of the Clostridium cluster XVIII was confirmed by DNA-DNA hybridisation experiments. The G+C content of DNA of strain SDG-Mt85-3Db (30.7+/-0.8 mol%) was comparable with that of Clostridium butyricum, the type species of the genus Clostridium. The name Clostridium saccharogumia is proposed for strain SDG-Mt85-3Db (=DSM 17460T=CCUG 51486T). The second isolate, strain ED-Mt61/PYG-s6, was a mesophilic strictly anaerobic Gram-positive regular rod. Based on 16S rRNA gene sequence analysis, its nearest relatives were Clostridium amygdalinum (93.3%), Clostridium saccharolyticum (93.1%) and Ruminococcus productus (93.0%). The isolate differed from these species in its ability to dehydrogenate enterodiol. It also possessed alpha-arabinosidase and -galactosidase and had a higher G+C content of DNA (48.0 mol%). According to these findings, it is proposed to create a novel genus, Lactonifactor, and a novel species, Lactonifactor longoviformis, to accommodate strain ED-Mt61/PYG-s6. The type strain is DSM 17459T (=CCUG 51487T).  相似文献   

17.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

18.
An alkalitolerant, thermotolerant, strictly aerobic and Gram-staining negative bacterial strain, designated YIM 78140T, was isolated from a water sample in Hehua hot spring, Tengchong, Yunnan province, south-west China. The colonies were light brown, convex and circular. Phylogenetic analysis of the 16S rRNA gene sequence of strain YIM 78140T indicated that it was clustered with members of β-Proteobacteria (with the similarity from 96.9 to 93.6 %). Good growth occurred at 40–50 °C, pH 8.0–9.0 and in the presence of 0–3 % (w/v) NaCl. The predominant ubiquinones were Q-8 and Q-9. The major fatty acids were C16:0, C17:0 cyclo, C18:1 ω7c and summed feature 3. The G+C content of genomic DNA was 70.8 mol%. The results of physiological and biochemical characteristics, phylogenetic analysis allowed the phenotypic and genotypic differentiation of strain YIM 78140T from its closest phylogenetic neighbours. Therefore, the strain YIM 78140T represents a novel genus of the family Comamonadaceae, for which the name Zhizhongheella caldifontis gen. nov., sp. nov. is proposed. The type strain is YIM 78140T (= BCRC 80649T = KCTC 32557T).  相似文献   

19.
Two novel genera of restricted facultative methylotrophs are described; both Methylosulfonomonas and Marinosulfonomonas are unique in being able to grow on methanesulfonic acid as their sole source of carbon and energy. Five identical strains of Methylosulfonomonas were isolated from diverse soil samples in England and were shown to differ in their morphology, physiology, DNA base composition, molecular genetics, and 16S rDNA sequences from the two marine strains of Marinosulfonomonas, which were isolated from British coastal waters. The marine strains were almost indistinguishable from each other and are considered to be strains of one species. Type species of each genus have been identified and named Methylosulfonomonas methylovora (strain M2) and Marinosulfonomonas methylotropha (strain PSCH4). Phylogenetic analysis using 16S rDNA sequencing places both genera in the α-Proteobacteria. Methylosulfonomonas is a discrete lineage within the α-2 subgroup and is not related closely to any other known bacterial genus. The Marinosulfonomonas strains form a monophyletic cluster in the α-3 subgroup of the Proteobacteria with Roseobacter spp. and some other partially characterized marine bacteria, but they are distinct from these at the genus level. This work shows that the isolation of bacteria with a unique biochemical character, the ability to grow on methanesulfonic acid as energy and carbon substrate, has resulted in the identification of two novel genera of methylotrophs that are unrelated to any other extant methylotroph genera. Received: 19 July 1996 / Accepted: 7 October 1996  相似文献   

20.
Huang  Zhaobin  Guo  Yu  Xiao  Qingqing  Liu  Xiupian  Lai  Qiliang 《Antonie van Leeuwenhoek》2021,114(10):1551-1563
Antonie van Leeuwenhoek - A novel bright-yellow pigmented bacterial strain SM2-FT was isolated from a mangrove sediment collected at the mangrove coast of Luoyang estuary, Quanzhou, China. Strain...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号