首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell migration is astoundingly diverse. Molecular signatures, cell-cell interactions, and environmental structures each play their part in shaping cell motion, yielding numerous morphologies and migration modes. Nevertheless, in recent years, a simple unifying law was found to describe cell migration across many different cell types and contexts: faster cells turn less frequently. This universal coupling between speed and persistence (UCSP) was explained by retrograde actin flow from front to back, but it remains unclear how this mechanism generalizes to cells with complex shapes and cells migrating in structured environments, which may not have a well-defined front-to-back orientation. Here, we present an in-depth characterization of an existing cellular Potts model, in which cells polarize dynamically from a combination of local actin dynamics (stimulating protrusions) and global membrane tension along the perimeter (inhibiting protrusions). We first show that the UCSP emerges spontaneously in this model through a cross talk of intracellular mechanisms, cell shape, and environmental constraints, resembling the dynamic nature of cell migration in vivo. Importantly, we find that local protrusion dynamics suffice to reproduce the UCSP—even in cases in which no clear global, front-to-back polarity exists. We then harness the spatial nature of the cellular Potts model to show how cell shape dynamics limit both the speed and persistence a cell can reach and how a rigid environment such as the skin can restrict cell motility even further. Our results broaden the range of potential mechanisms underlying the speed-persistence coupling that has emerged as a fundamental property of migrating cells.  相似文献   

2.
Cell migration plays a critical role in a wide variety of physiological and pathological phenomena as well as in scaffold-based tissue engineering. Cell migration behavior is known to be governed by biochemical stimuli and cellular interactions. Biophysical processes associated with interactions between the cell and its surrounding extracellular matrix may also play a significant role in regulating migration. Although biophysical properties of two-dimensional substrates have been shown to significantly influence cell migration, elucidating factors governing migration in a three-dimensional environment is a relatively new avenue of research. Here, we investigate the effect of the three-dimensional microstructure, specifically the pore size and Young's modulus, of collagen-glycosaminoglycan scaffolds on the migratory behavior of individual mouse fibroblasts. We observe that the fibroblast migration, characterized by motile fraction as well as locomotion speed, decreases as scaffold pore size increases across a range from 90 to 150 μm. Directly testing the effects of varying strut Young's modulus on cell motility showed a biphasic relationship between cell speed and strut modulus and also indicated that mechanical factors were not responsible for the observed effect of scaffold pore size on cell motility. Instead, in-depth analysis of cell locomotion paths revealed that the distribution of junction points between scaffold struts strongly modulates motility. Strut junction interactions affect local directional persistence as well as cell speed at and away from the junctions, providing a new biophysical mechanism for the governance of cell motility by the extracellular microstructure.  相似文献   

3.
Reporter-based assays underlie many high-throughput screening (HTS) platforms, but most are limited to in vitro applications. Here, we report a simple whole-organism HTS method for quantifying changes in reporter intensity in individual zebrafish over time termed, Automated Reporter Quantification in vivo (ARQiv). ARQiv differs from current "high-content" (e.g., confocal imaging-based) whole-organism screening technologies by providing a purely quantitative data acquisition approach that affords marked improvements in throughput. ARQiv uses a fluorescence microplate reader with specific detection functionalities necessary for robust quantification of reporter signals in vivo. This approach is: 1) Rapid; achieving true HTS capacities (i.e., >50,000 units per day), 2) Reproducible; attaining HTS-compatible assay quality (i.e., Z'-factors of ≥0.5), and 3) Flexible; amenable to nearly any reporter-based assay in zebrafish embryos, larvae, or juveniles. ARQiv is used here to quantify changes in: 1) Cell number; loss and regeneration of two different fluorescently tagged cell types (pancreatic beta cells and rod photoreceptors), 2) Cell signaling; relative activity of a transgenic Notch-signaling reporter, and 3) Cell metabolism; accumulation of reactive oxygen species. In summary, ARQiv is a versatile and readily accessible approach facilitating evaluation of genetic and/or chemical manipulations in living zebrafish that complements current "high-content" whole-organism screening methods by providing a first-tier in vivo HTS drug discovery platform.  相似文献   

4.
Cell adhesion is crucial for cells to not only physically interact with each other but also sense their microenvironment and respond accordingly. In fact, adherent cells can generate physical forces that are transmitted to the surrounding matrix, regulating the formation of cell–matrix adhesions. The main purpose of this work is to develop a computational model to simulate the dynamics of cell–matrix adhesions through a cohesive formulation within the framework of the finite element method and based on the principles of continuum damage mechanics. This model enables the simulation of the mechanical adhesion between cell and extracellular matrix (ECM) as regulated by local multidirectional forces and thus predicts the onset and growth of the adhesion. In addition, this numerical approach allows the simulation of the cell as a whole, as it models the complete mechanical interaction between cell and ECM. As a result, we can investigate and quantify how different mechanical conditions in the cell (e.g., contractile forces, actin cytoskeletal properties) or in the ECM (e.g., stiffness, external forces) can regulate the dynamics of cell–matrix adhesions.  相似文献   

5.
Cellular motility is the basis for cancer cell invasion and metastasis. In the case of breast cancer, the most common type of cancer among women, metastasis represents the most devastating stage of the disease. The central role of cellular motility in cancer development emphasizes the importance of understanding the specific mechanisms involved in this process. In this context, tumor development and metastasis would be the consequence of a loss or defect of the mechanisms that control cytoskeletal remodeling. Profilin I belongs to a family of small actin binding proteins that are thought to assist in actin filament elongation at the leading edge of migrating cells. Traditionally, Profilin I has been considered to be an essential control element for actin polymerization and cell migration. Expression of Profilin I is down-regulated in breast and various other cancer cells. In MDA-MB-231 cells, a breast cancer cell line, further inhibition of Profilin I expression promotes hypermotility and metastatic spread, a finding that contrasts with the proposed role of Profilin in enhancing polymerization. In this report, we have taken advantage of the fluorescence recovery after photobleaching (FRAP) of GFP-actin to quantify and compare actin dynamics at the leading edge level in both cancer and non-cancer cell models. Our results suggest that (i) a high level of actin dynamics (i.e., a large mobile fraction of actin filaments and a fast turnover) is a common characteristic of some cancer cells; (ii) actin polymerization shows a high degree of independence from the presence of extracellular growth factors; and (iii) our results also corroborate the role of Profilin I in regulating actin polymerization, as raising the intracellular levels of Profilin I decreased the mobile fraction ratio of actin filaments and slowed their polymerization rate; furthermore, increased Profilin levels also led to reduced individual cell velocity and directionality.  相似文献   

6.
Cell migration is a fundamental characteristic of vital processes such as tissue morphogenesis, wound healing and immune cell homing to lymph nodes and inflamed or infected sites. Therefore, various brain defect diseases, chronic inflammatory diseases as well as tumor formation and metastasis are associated with aberrant or absent cell migration. We embedded multicellular brain cancer spheroids in Matrigel? and utilized single-particle tracking to extract the paths of cells migrating away from the spheroids. We found that – in contrast to local invasion – single cell migration is independent of Matrigel? concentration and is characterized by high directionality and persistence. Furthermore, we identified a subpopulation of super-spreading cells with >200-fold longer persistence times than the majority of cells. These results highlight yet another aspect of cell heterogeneity in tumors.  相似文献   

7.
Cell migration is a highly integrated process where actin turnover, actomyosin contractility, and adhesion dynamics are all closely linked. In this paper, we propose a computational model investigating the coupling of these fundamental processes within the context of spontaneous (i.e. unstimulated) cell migration. In the unstimulated cell, membrane oscillations originating from the interaction between passive hydrostatic pressure and contractility are sufficient to lead to the formation of adhesion spots. Cell contractility then leads to the maturation of these adhesion spots into focal adhesions. Due to active actin polymerization, which reinforces protrusion at the leading edge, the traction force required for cell translocation can be generated. Computational simulations first show that the model hypotheses allow one to reproduce the main features of fibroblast cell migration and established results on the biphasic aspect of the cell speed as a function of adhesion strength. The model also demonstrates that certain temporal parameters, such as the adhesion proteins recycling time and adhesion lifetimes, influence cell motion patterns, particularly cell speed and persistence of the direction of migration. This study provides some elements, which allow a better understanding of spontaneous cell migration and enables a first glance at how an individual cell would potentially react once exposed to a stimulus.  相似文献   

8.
Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).  相似文献   

9.
Collective dynamics in multicellular systems such as biological organs and tissues plays a key role in biological development, regeneration, and pathological conditions. Collective tissue dynamics—understood as population behaviour arising from the interplay of the constituting discrete cells—can be studied with on- and off-lattice agent-based models. However, classical on-lattice agent-based models, also known as cellular automata, fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. To overcome drawbacks of classical on-lattice models, we introduce an on-lattice, agent-based modelling class for collective cell migration, which we call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchronous time updates, and the explicit consideration of individual cell velocities. While rules in classical cellular automata are typically chosen ad hoc, rules for cell-cell and cell-environment interactions in the BIO-LGCA can also be derived from experimental cell migration data or biophysical laws for individual cell migration. We introduce elementary BIO-LGCA models of fundamental cell interactions, which may be combined in a modular fashion to model complex multicellular phenomena. We exemplify the mathematical mean-field analysis of specific BIO-LGCA models, which allows to explain collective behaviour. The first example predicts the formation of clusters in adhesively interacting cells. The second example is based on a novel BIO-LGCA combining adhesive interactions and alignment. For this model, our analysis clarifies the nature of the recently discovered invasion plasticity of breast cancer cells in heterogeneous environments.  相似文献   

10.
Human umbilical vein endothelial cell attachment, spreading and migration on collagen and vitronectin are mediated by integrins alpha 2 beta 1 and alpha v beta 3, respectively, and these events take place in the absence of cytokines, growth factors, or chemoattractants. Cell attachment and spreading on these ligands occur in the absence of extracellular calcium, as does migration on collagen. In contrast, vitronectin-mediated migration is absolutely dependent on the presence of extracellular calcium. Cell contact with immobilized vitronectin or anti-alpha v beta 3 mAbs promotes a measurable rise in [Ca2+]i which requires an extracellular calcium source, whereas collagen, or anti- alpha 2 beta 1 mAbs fail to promote this signaling event. In fact, vitronectin-mediated migration and the rise in intracellular calcium showed the same dose dependence on extracellular calcium. While vitronectin and collagen differ in their ability to induce a calcium influx both ligands or antibodies to their respective integrins promote an equivalent increase in intracellular pH consistent with activation of the Na/H antiporter an event independent of extracellular calcium. These results support two salient conclusions. Firstly, collagen and vitronectin, through their respective integrins, promote distinct intracellular signaling events. Secondly, the alpha v beta 3 specific influx of calcium is not required for cell spreading yet appears to facilitate cellular migration on vitronectin.  相似文献   

11.
Tumorigenesis often involves specific changes in cell motility and intercellular adhesion. Understanding the collective cancer cell behavior associated with these specific changes could facilitate the detection of malignant characteristics during tumor growth and invasion. In this study, a cellular vertex model is developed to investigate the collective dynamics of a disk-like aggregate of cancer cells confined in a confluent monolayer of normal cells. The effects of intercellular adhesion and cell motility on tumor progression are examined. It is found that the stresses in both the cancer cells and the normal cells increase with tumor growth, resulting in a crowded environment and enhanced cell apoptosis. The intercellular adhesion between cancer cells and normal cells is revealed to promote tumor growth and invasion. The tumor invasion dynamics hinges on the motility of cancer cells. The cancer cells could orchestrate into different collective migration modes, e.g., directional migration and rotational oscillations, dictated by the competition between cell persistence and local coordination. Phase diagrams are established to reveal the competitive mechanisms. This work highlights the role of mechanics in regulating tumor growth and invasion.  相似文献   

12.
The extracellular environment through which neural crest cells (NCCs) translocate and differentiate plays a crucial role in the determination of cell migration and homing. In the trunk, NCC-derived melanocyte precursor cells (MPCs) take the dorsolateral pathway and colonize the skin, where they differentiate into pigment cells (PCs). Our hypothesis was that the skin, the MPCs' target tissue, may induce a directional response of NCCs toward diffusible factor(s). We show that the treatment of in vitro NCCs with skin extract (SE) or Stem Cell Factor (SCF) contributes to maintaining proliferative activity, accelerates melanocyte differentiation, and guides a subpopulation of NCCs by chemotaxis toward the gradient source of these factors, suggesting that they may represent the MPCs' subpopulation. Current data on stimulated directional persistence of NCCs supports the participation of diffusible molecules in the target colonization mechanism, guiding MPCs to migrate and invade the skin. Our results show similar effects of SE and SCF on NCC growth, proliferation and pigment cell differentiation. Also, the use of a proven real-time directionality-based objective assay shows the directional migration of NCCs toward SE and SCF, indicating that the epidermal SCF molecule may be involved in the chemotactic guidance mechanism of in vivo NCCs. Although SCF is the strongest candidate to account for these phenomena, the nature of other factor(s) affecting NCC-oriented migration remains to be investigated. This data amplifies the functional scope of trophic factors by involving them in new cell behaviors such as molecular guidance in the colonization mechanism of embryonic cells.  相似文献   

13.
Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β‐PIX (PAK‐interacting exchange factor‐β). In H1299 cells, β‐PIX's activity was found not to be down‐regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β‐PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β‐PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β‐PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.  相似文献   

14.
The effect of nerve growth factor (NGF) on tunicamycin (Tm)-treated neurons in the trigeminal ganglion was investigated by use of caspase-3 immunohistochemistry. In intact embryos at embryonic day 16.5, only a few caspase-3-immunoreactivity were detected in the ganglion neurons. Mean ± SE of the density of the immunoreactivity was 0.22 ± 0.03%. In contrast, the number of the immunoreactive neurons was increased at 24 h after injection of 0.5 μg Tm in 1 μl of 0.05 N NaOH solution into mouse embryos at embryonic day 15.5. The density of immunoreactivity was also increased (mean ± SE = 1.44 ± 0.11%) compared to intact and 0.05 N NaOH-treated embryos (mean ± SE = 0.35 ± 0.03%). The Tm treatment caused increase of the number of trigeminal neurons representing apoptotic profiles (intact, mean ± SE = 79.3 ± 8.5; 0.05 N NaOH, mean ± SE = 132 ± 11.5; 0.5 μg Tm, mean ± SE = 370.2 ± 64.8). In addition, NGF significantly prevented the increase of density of the immunoreactivity (mean ± SE = 0.54 ± 0.16%) and the number of apoptotic cells (mean ± SE = 146.2 ± 11.3). Saline application (without NGF) had no effect on Tm-induced increase of the immunoreactivity (mean ± SE = 1.78 ± 0.23%) or the apoptotic profiles (mean ± SE = 431.9 ± 80.5). These results indicate that Tm-induced cell death in the trigeminal ganglion is suppressed by NGF in the mouse embryo.  相似文献   

15.
Polysaccharides are being processed into biomaterials for numerous biological applications due to their native source in numerous tissues and biological functions. For instance, hyaluronic acid (HA) is found abundantly in the body, interacts with cells through surface receptors, and can regulate cellular behavior (e.g., proliferation, migration). HA was previously modified with reactive groups to form hydrogels that are degraded by hyaluronidases, either added exogenously or produced by cells. However, these hydrogels may be inhibitory and their applications are limited if the appropriate enzymes are not present. Here, for the first time, we synthesized HA macromers and hydrogels that are both hydrolytically (via ester group hydrolysis) and enzymatically degradable. The hydrogel degradation and growth factor release was tailored through the hydrogel cross-linking density (i.e., macromer concentration) and copolymerization with purely enzymatically degradable macromers. When mesenchymal stem cells (MSCs) were encapsulated in the hydrogels, cellular organization and tissue distribution was influenced by the copolymer concentration. Importantly, the distribution of released extracellular matrix molecules (e.g., chondroitin sulfate) was improved with increasing amounts of the hydrolytically degradable component. Overall, this new macromer allows for enhanced control over the structural evolution of the HA hydrogels toward applications as biomaterials.  相似文献   

16.
Constructing predictive models to simulate complex bioprocess dynamics, particularly time-varying (i.e., parameters varying over time) and history-dependent (i.e., current kinetics dependent on historical culture conditions) behavior, has been a longstanding research challenge. Current advances in hybrid modeling offer a solution to this by integrating kinetic models with data-driven techniques. This article proposes a novel two-step framework: first (i) speculate and combine several possible kinetic model structures sourced from process and phenomenological knowledge, then (ii) identify the most likely kinetic model structure and its parameter values using model-free Reinforcement Learning (RL). Specifically, Step 1 collates feasible history-dependent model structures, then Step 2 uses RL to simultaneously identify the correct model structure and the time-varying parameter trajectories. To demonstrate the performance of this framework, a range of in-silico case studies were carried out. The results show that the proposed framework can efficiently construct high-fidelity models to quantify both time-varying and history-dependent kinetic behaviors while minimizing the risks of over-parametrization and over-fitting. Finally, the primary advantages of the proposed framework and its limitation were thoroughly discussed in comparison to other existing hybrid modeling and model structure identification techniques, highlighting the potential of this framework for general bioprocess modeling.  相似文献   

17.
Cell migration is essential in many physiological and pathological processes. To understand this complex behavior, researchers have turned to quantitative, in vitro, image-based measurements to dissect the steps of cellular motility. With the rise of automated microscopy, the bottleneck in these approaches is no longer data acquisition, but data analysis. Using time-lapse microscopy and computer-assisted image analysis, we have developed a novel, quantitative assay that extracts a multivariate profile for cellular mo-tility. This technique measures three dynamic parameters per single cell: speed, surface area, and an in-dex of cell expansion/contraction activity (DECCA). Our assay can be used in combination with a variety of extracellular matrix components, or other soluble agents, to analyze the effects of the microenviron-ment on cellular migration dynamics in vitro. Our application was developed and tested using A431 and HT-1080 cell lines plated on laminin-332 or fibronectin substrates. Our results indicate that HT-1080 cells migrate faster, have a greater surface area, and have a higher DECCA index than A431 cells on both matrices (for all parameters, p < 0.05). Spearman’s correlation coefficients suggest that for these cell lines and matrices, various combinations of the three measurements display low to medium-high levels of correlation. These findings compare well with previous literature. Our approach provides new tools to measure cellular migration dynamics and address questions on the relationship between cell motility and the microenvironment, using only common microscopy techniques, accessible image analysis applica-tions, and a basic desktop computer for image processing.  相似文献   

18.
In our body cells move in three dimensions, embedded in an extracellular matrix that varies in composition, density and stiffness, and this movement is fundamental to life. Next to 3D cell migration assays, representing these physiological circumstances, still we need 2D migrations assays to perform detailed studies on the contribution of matrix‐components and (extra)cellular proteins to cell movements. Next to the debate on differences between 3D and 2D migration, there also are many new perspectives on the use and development of novel or modified 2D cell migration assays. Of special significance is the introduction of so‐called barrier migration assays, methods that avoid cell and matrix damage, as complementation or replacement of scratch/wound healing assays. Here, we discuss the possibilities and limitations of different 2D barrier migration assays. J. Cell. Physiol. 226: 288–290, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.  相似文献   

20.

Background  

Cell migration is a complex phenomenon that requires the coordination of numerous cellular processes. Investigation of cell migration and its underlying biology is of interest to basic scientists and those in search of therapeutics. Current migration assays for screening small molecules, siRNAs, or other perturbations are difficult to perform in parallel at the scale required to screen large libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号