首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exponential development of molecular markers enables a more effective study of the genetic architecture of traits of economic importance, like test weight in wheat (Triticum aestivum L.), for which a high value is desired by most end-users. The association mapping (AM) method now allows more precise exploration of the entire genome. AM requires populations with substantial genetic variability of the traits of interest. The breeding lines at the end of a selection cycle, characterized for numerous traits, represent a potentially useful population for AM studies. Using three elite line populations, selected by several breeders and genotyped with about 2,500 Diversity Arrays Technology markers, several associations were identified between these markers and test weight, grain yield and heading date. To minimize spurious associations, we compared the general linear model and mixed linear model (MLM), which adjust for population structure and kinship differently. The MLM model with the kinship matrix was the most efficient. Finally, elite lines from several breeding programs had sufficient genetic variability to allow for the mapping of several chromosomal regions involved in the variation of three important traits.  相似文献   

2.
Multi‐parent advanced generation inter‐cross (MAGIC) populations are an emerging type of resource for dissecting the genetic structure of traits and improving breeding populations. We developed a MAGIC population for cowpea (Vigna unguiculata L. Walp.) from eight founder parents. These founders were genetically diverse and carried many abiotic and biotic stress resistance, seed quality and agronomic traits relevant to cowpea improvement in the United States and sub‐Saharan Africa, where cowpea is vitally important in the human diet and local economies. The eight parents were inter‐crossed using structured matings to ensure that the population would have balanced representation from each parent, followed by single‐seed descent, resulting in 305 F8 recombinant inbred lines each carrying a mosaic of genome blocks contributed by all founders. This was confirmed by single nucleotide polymorphism genotyping with the Illumina Cowpea Consortium Array. These lines were on average 99.74% homozygous but also diverse in agronomic traits across environments. Quantitative trait loci (QTLs) were identified for several parental traits. Loci with major effects on photoperiod sensitivity and seed size were also verified by biparental genetic mapping. The recombination events were concentrated in telomeric regions. Due to its broad genetic base, this cowpea MAGIC population promises breakthroughs in genetic gain, QTL and gene discovery, enhancement of breeding populations and, for some lines, direct releases as new varieties.  相似文献   

3.
Murraya koenigii (L.) Spreng., commonly known as curry leaf plant, is found in the different hilly regions of India. In the present study, fifty-nine accessions representing eight wild populations of M. koenigii were analyzed using thirteen ISSR primers. A total of 152 bands were amplified, out of which, 136 were polymorphic corresponding to 89.47% polymorphism across the accessions. The pairwise population genetic distances were calculated for all the populations that varied from 0.05 to 0.13 between the populations of M. koenigii. AMOVA and Nei’s genetic diversity analysis revealed higher genetic variations within populations than among the populations. The clustering of populations in the dendrogram was not in congruence with geographical affiliations. The results indicate that the ISSR method is sufficiently informative and powerful to estimate the genetic diversity in M. koenigii populations. As M. koenigii is an important wild plant genetic resource, therefore, information on genetic variability might be a potential source as breeding material for development of commercially valuable traits in M. koenigii plants.  相似文献   

4.
Our aim was to assess parental and population genetic variability in a partially nested set of breeding populations from the breeding program at Dami Research Station (West New Britain, PNG). Twenty microsatellite markers were tested for their ability to characterize genetic variation in oil palm populations bred at Dami Research Station. One hundred and twenty six individuals, including 100 F1 tenera hybrids of Dami Deli crossed with either AVROS, Ghana or AVROS/Ghana breeding lines were analysed. Eighteen of these markers were polymorphic within and among populations, amplifying 103 alleles in oil palm. Three individuals of other palm species (Cocos nucifera and two Phoenix spp.) were included as outliers. With these markers we have the power to distinguish individual palms, hence we conclude that they will facilitate association of markers with important phenotypic traits to streamline future breeding and selection.  相似文献   

5.
Allozyme variation was examined inCarex sect.Phyllostachys (Cyperaceae) to study the effects of species-specific traits and phylogenetic relatedness on genetic structure. In contrast to the findings of similar studies, genetic variability in thePhyllostachys is poorly correlated with geographic range and putative differences in breeding systems (as inferred from morphology). This suggests that other patterns of evolution, colonization, and gene flow characterize the species found in this section. Fixation indices are negative for all populations suggesting that mechanisms such as disassortative mating and selection are maintaining heterozygous excess within populations. Closely related taxa often exhibit different genetic variability statistics. In some instances, however, clades (e.g.C. jamesii andC. juniperorum) display very similar levels of genetic variability despite marked differences in species-specific traits. Recent speciation coupled with the ability to maintain historical levels of variation within populations may be factors accounting for this phenomenon. Contrary to similar studies, species restricted to known glacial refugia have lower genetic diversity than those species that underwent mass migrations in response to deglaciation. Narrowly endemic species were found to partition their genetic diversity within, as opposed to between populations. The opposite trend was evident in wider ranging congeners.  相似文献   

6.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

7.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

8.
  • Since tropical trees often have long generation times and relatively small reproductive populations, breeding systems and genetic variation are important for population viability and have consequences for conservation. Miconia albicans is an obligate, diplosporous, apomictic species widespread in the Brazilian Cerrado, the savanna areas in central Brazil and elsewhere in the Neotropics. The genetic variability would be, theoretically, low within these male‐sterile and possibly clonal populations, although some variation would be expected due to recombination during restitutional meiosis.
  • We used ISSR markers to assess genetic diversity of M. albicans and to compare with other tropical trees, including invasive species of Melastomataceae. A total of 120 individuals from six populations were analysed using ten ISSR primers, which produced 153 fully reproducible fragments.
  • The populations of M. albicans presented mean Shannon's information index (I) of 0.244 and expected heterozygosity (He) of 0.168. Only two pairs of apparently clonal trees were identified, and genetic diversity was relatively high. A hierarchical amova for all ISSR datasets showed that 74% of the variance was found among populations, while only 26% of the variance was found within populations of this species. Multivariate and Bayesian analyses indicated marked separation between the studied populations.
  • The genetic diversity generated by restitutional meiosis, polyploidy and possibly other genome changes may explain the morpho‐physiological plasticity and the ability of these plants to differentiate and occupy such a wide territory and different environmental conditions. Producing enormous amounts of bird‐dispersed fruits, M. albicans possess weedy potential that may rival other Melastomataceae alien invaders.
  相似文献   

9.
In this paper, we analyze the genetic variability in four Tunisian natural populations of Medicago ciliaris using 19 quantitative traits and six polymorphic microsatellite loci. We investigated the amplification transferability of 30 microsatellites developed in the model legume M. truncatula to M. ciliaris. Results revealed that about 56.66% of analyzed markers are valuable genetic markers for M. ciliaris. The most genetic diversity at quantitative traits and microsatellite loci was found to occur within populations (>80%). Low differentiations among populations at quantitative traits Q ST  = 0.146 and molecular markers F ST  = 0.18 were found. The majority of measured traits exhibited no significant difference in the level of Q ST and F ST . Furthermore, significant correlations established between these traits and eco-geographical factors suggested that natural selection should be invoked to explain the level of phenotypic divergence among populations rather than drift. There was no significant correlation between population differentiation at quantitative traits and molecular markers. Significant spatial genetic structure consistent with models of isolation by distance was detected within all studied populations. The site-of-origin environmental factors explain about 9.07% of total phenotypic genetic variation among populations. The eco-geographical factors that influence more the variation of measured traits among populations are the soil texture and altitude. Nevertheless, there were no consistent pattern of associations between gene diversity (He) and environmental factors.  相似文献   

10.
为筛选火龙果(Hylocereus undatus)优良种质资源,对22份种质资源果实的表型性状、农艺性状、品质性状进行遗传多样性分析。结果表明,火龙果种质资源果实的表型性状、农艺性状和品质性状具有丰富的遗传多样性和较高的变异性,表型性状的多样性指数(H′)为0~1.04,品质性状为0.40~2.01;农艺性状的变异系数(CV)为0.06~0.38,品质性状为0.01~0.62。聚类分析表明,在遗传距离为15时,火龙果22份种质资源可分为5类,说明不同资源间亲缘关系较远。这为发掘火龙果的育种潜力,筛选优异基因资源,改良种质奠定了基础。  相似文献   

11.
Characterizing the relationships between genotype and phenotype for developmental adaptive traits is essential to understand the evolutionary dynamics underlying biodiversity. In holometabolous insects, the time to reach the reproductive stage and pupation site preference are two such traits. Here we characterize aspects of the genetic architecture for Developmental Time (decomposed in Larval and Pupal components) and Pupation Height using lines derived from three natural populations of Drosophila melanogaster raised at two temperatures. For all traits, phenotypic differences and variation in plasticity between populations suggest adaptation to the original thermal regimes. However, high variability within populations shows that selection does not exhaust genetic variance for these traits. This could be partly explained by local adaptation, environmental heterogeneity and modifications in the genetic architecture of traits according to environment and ontogenetic stage. Indeed, our results show that the genetic factors affecting Developmental Time and Pupation Height are temperature-specific. Varying relationships between Larval and Pupal Developmental Time between and within populations also suggest stage-specific modifications of genetic architecture for this trait. This flexibility would allow for a somewhat independent evolution of adaptive traits at different environments and life stages, favoring the maintenance of genetic variability and thus sustaining the traits’ evolvabilities.  相似文献   

12.
Many biological species are threatened with extinction because of a number of factors such as climate change and habitat loss, and their preservation depends on an accurate understanding of the extent of their genetic variability within and among populations. In this study, we assessed the genetic divergence of five quantitative traits in 10 populations of an endangered cruciferous species, Boechera fecunda, found in only several populations in each of two geographic regions (WEST and EAST) in southwestern Montana. We analyzed variation in quantitative traits, neutral molecular markers, and environmental factors and provided evidence that despite the restricted geographical distribution of this species, it exhibits a high level of genetic variation and regional adaptation. Conservation efforts therefore should be directed to the preservation of populations in each of these two regions without attempting transplantation between regions. Heritabilities and genetic coefficients of variation estimated from nested ANOVAs were generally high for leaf and rosette traits, although lower (and not significantly different from 0) for water‐use efficiency. Measures of quantitative genetic differentiation, QST, were calculated for each trait from each pair of populations. For three of the five traits, these values were significantly higher between regions compared with those within regions (after adjustment for neutral genetic variation, FST). This suggested that natural selection has played an important role in producing regional divergence in this species. Our analysis also revealed that the B. fecunda populations appear to be locally adapted due, at least in part, to differences in environmental conditions in the EAST and WEST regions.  相似文献   

13.
Genetic improvement in apomictic forage species has been restricted because of the absence of genetic variability in sexual germplasm with the same ploidy level. Following a new breeding scheme, a sexual synthetic tetraploid population (SSTP) of Paspalum notatum has been generated. The objectives of this work were: (a) to evaluate the genetic variability in SSTP by means of molecular markers, morphologic and agronomic traits, and seed fertility and quality traits and (b) to assess the transference of genetic variability from the apomictic germplasm to the sexual one. Molecular markers revealed a twofold higher level of variability in the SSTP in comparison with the sexual germplasm utilised for its generation, and similar levels with the apomictic ones; moreover, markers showed that most of the variability was inherited from the apomictic germplasm. Morphologic and agronomic traits and seed fertility and quality traits showed high levels of variation in the three groups of genotypes indicating that the new breeding scheme was effective in transferring variability from the apomictic germplasm to the SSTP. This new population will be useful in breeding of P. notatum, and the breeding scheme used for its generation may be used in other apomictic species.  相似文献   

14.
The effects of hybridization and introzgression were assessed among two naturally hybridizing bivalve molluscs (the mussels Mytilus edulis and M. galloprovincialis) from western Europe to estimate how disruptive these processes are to developmental stability (measured in terms of morphological variability). Ten shell traits were measured for 392 mussels from four allopatric populations (two each of At. edulis and At. galloprovincialis) and two hybrid populations. An index of variability (defined as Zi= |yi–yi where y; is the population mean of the length-standardized trait, and yi is the individualcar;s length-standardized trait value) was constructed for each trait, and for the sum of the traits. The hybrid populations did not exhibit greater mean variability than the allopatric populations for any of the indices. Upon pooling, the hybrid populations had significantly lower variability than the pooled M. edulis populations and the pooled M. galloprovincialis populations in two analyses, and had similar means in the remaining nine analyses. Where significant differences existed, the pooled M. galloprovincialis had lower levels of mean trait variability than the pooled M. edulis. Among the two hybrid populations, the putative Fl hybrids and backcross individuals exhibited means of trait variability which were similar to those of the parental types. Thus, extensive hybridization and introgression do not adversely affect developmental stability among these mussel populations. There was a strong significant correlation between the ranking of indices (based on the amount of variability) across all six populations, indicating that a large genetic component determines the measured morphological variability. It is concluded that the genes or gene complexes which control morphological development in M. edulis and M. galloprovincialis arc very similar, providing further evidence of the close evolutionary relatedness of these mussel taxa.  相似文献   

15.
Li  Xiuxiu  Chen  Zhuo  Zhang  Guomin  Lu  Hongwei  Qin  Peng  Qi  Ming  Yu  Ying  Jiao  Bingke  Zhao  Xianfeng  Gao  Qiang  Wang  Hao  Wu  Yunyu  Ma  Juntao  Zhang  Liyan  Wang  Yongli  Deng  Lingwei  Yao  Shanguo  Cheng  Zhukuang  Yu  Diqiu  Zhu  Lihuang  Xue  Yongbiao  Chu  Chengcai  Li  Aihong  Li  Shigui  Liang  Chengzhi 《中国科学:生命科学英文版》2020,63(11):1688-1702

Genotyping and phenotyping large natural populations provide opportunities for population genomic analysis and genome-wide association studies (GWAS). Several rice populations have been re-sequenced in the past decade; however, many major Chinese rice cultivars were not included in these studies. Here, we report large-scale genomic and phenotypic datasets for a collection mainly comprised of 1,275 rice accessions of widely planted cultivars and parental hybrid rice lines from China. The population was divided into three indica/Xian and three japonica/Geng phylogenetic subgroups that correlate strongly with their geographic or breeding origins. We acquired a total of 146 phenotypic datasets for 29 agronomic traits under multi-environments for different subpopulations. With GWAS, we identified a total of 143 significant association loci, including three newly identified candidate genes or alleles that control heading date or amylose content. Our genotypic analysis of agronomically important genes in the population revealed that many favorable alleles are underused in elite accessions, suggesting they may be used to provide improvements in future breeding efforts. Our study provides useful resources for rice genetics research and breeding.

  相似文献   

16.

Melia dubia, a fast-growing tree species with multi-various uses, is suitable species for agro and farm forestry. In an extensive survey in eight districts of Karnataka, India, it was observed that the majority of M. dubia natural populations are fragmented and tree number is very less. Sixty trees were selected to assess the genetic variability using SSR markers. Analysis revealed a moderate level of genetic diversity (Ho?=?0.47; He?=?0.69) and inbreeding as evinced by overall positive fixation index of 0.30. Mean Fst observed was 0.16 indicating moderate genetic differentiation among populations. The analysis of molecular variance ascribed 99% of total genetic diversity to within population variation. Cluster analysis by unweighted pair group method and genetic differentiation through structure analysis did not differentiate 10 populations as per geographic location, showing that moderate genetic diversity was not due to geographic distance. As genetic diversity was more within population, selection of individual plants would be more effective for genetic improvement to capture the natural variation within the population. An understanding of genetic diversity and differentiation of M. dubia natural populations will help in exploiting the genetic resource for tree improvement and also in formulating management and conservation strategies for this species.

  相似文献   

17.
18.
Genetic variability in 10 natural Tunisian populations of Medicago laciniata were analysed using 19 quantitative traits and 12 polymorphic microsatellite loci. A large degree of genetic variability within-populations and among-populations was detected for both quantitative characters and molecular markers. High genetic differentiation among populations for quantitative traits was seen, with Q ST = 0.47, and F ST = 0.47 for microsatellite markers. Several quantitative traits displayed no statistical difference in the levels of Q ST and F ST . Further, significant correlations between quantitative traits and eco-geographical factors suggest that divergence in the traits among populations may track environmental differences. There was no significant correlation between genetic variability at quantitative traits and microsatellite markers within populations. The site-of-origin of eco-geographical factors explain between 18.13% and 23.40% of genetic variance among populations at quantitative traits and microsatellite markers, respectively. The environmental factors that most influence variation in measured traits among populations are assimilated phosphorus (P205) and mean annual rainfall, followed by climate and soil texture, altitude and organic matter. Significant associations between eco-geographical factors and gene diversity, H e , were established in five-microsatellite loci suggesting that these simple sequence repeats (SSRs) are not necessarily biologically neutral.  相似文献   

19.
20.
One of the prime concerns at zoos and at primate breeding facilities is to maintain genetic variability. This can be accomplished by avoiding inbreeding. It is relatively easy to assess genetic variability and the level of inbreeding by using pedigree information and genetic markers. In this study we used genetic markers controlled by 6 independent polymorphic loci (GPI, PGD, CA2, MPI, DIA1, Tf) to ascertain genetic variation in two captive and one wild population of rhesus monkeys. Two other loci ADA and NP were also examined and found to be monomorphic in the three populations. F-statistics and contingency chi-square analyses indicated that there was significant genetic differentiation among the populations. We also found that the mean heterozygosities were very similar in the three populations, in spite of the diverse breeding strategies. These data are important because rhesus monkeys are frequently used for biomedical research; and the genetic markers provide useful information for genetic management of captive colonies of nonhuman primates. © 1992 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号