首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, multifunctional optical imaging system was developed by integrating four-dimensional (4D) real-time confocal microscopy (RT-CM), multicolor total internal reflection microscopy (TIRFM), and Nomarski differential interference contrast (DIC) microscopy based on an epifluorescence microscope platform. A microcell incubator was combined with the imaging system for extended, real-time monitoring of living cells. The 4D images were generated by a combination of 3D images and multiple spatial or time images of a specimen, obtained at 10 nm intervals. Optical sectioning was accomplished with a z-motor, which obtained 4D information with sequential layered sections. The integrated imaging system showed excellent detection sensitivity at the single-molecule level and 3D-spatial resolution (20 nm x-y and 10 nm z-axis) without moving the cell sample. This could be a tool for obtaining crucial information needed to develop approaches for characterizing and understanding the dynamics of biomolecules and nanoparticles in individual living cells and molecular interactions at the single-molecule level.  相似文献   

2.
J N Myers  D Holowka  B Baird 《Biochemistry》1992,31(2):567-575
Erythrosin 5'-thiosemicarbazide labeled immunoglobulin E (IgE) was used to monitor the rotational dynamics of monomeric and dimeric Fc epsilon RI receptors for IgE on rat basophilic leukemia (RBL) basophilic leukemia (RBL) cells using time-resolved phosphorescence anisotropy. Receptors were studied both on living RBL cells and on membrane vesicles derived from RBL cell plasma membrane. The un-cross-linked IgE-receptor complexes on cells and vesicles exhibit rotational correlation times that are consistent with those expected for freely rotating monomers, but a small fraction of these complexes on cells may be rotationally immobile. A comparison of the initial phosphorescence anisotropy values for erythrosin-labeled IgE-receptor complexes on cells and vesicles reveals a fast component of rotational motion that is greater on the vesicles and may be due to a site of segmental flexibility in the receptor itself. Dimers of IgE-receptor complexes formed with anti-IgE monoclonal antibodies appear to be largely immobile on cells, but they are mobile on vesicles with a 2-fold larger rotational correlation time than the monomeric complexes. The results suggest that dimeric IgE-receptor complexes undergo interactions with other membrane components on intact cells that do not occur on the membrane vesicles. The possible significance of these interactions to receptor function is discussed.  相似文献   

3.
Chromatin organization and dynamics are critical for gene regulation. In this work we present a methodology for fast and parallel three-dimensional (3D) tracking of multiple chromosomal loci of choice over many thousands of frames on various timescales. We achieved this by developing and combining fluorogenic and replenishable nanobody arrays, engineered point spread functions, and light sheet illumination. The result is gentle live-cell 3D tracking with excellent spatiotemporal resolution throughout the mammalian cell nucleus. Correction for both sample drift and nuclear translation facilitated accurate long-term tracking of the chromatin dynamics. We demonstrate tracking both of fast dynamics (50 Hz) and over timescales extending to several hours, and we find both large heterogeneity between cells and apparent anisotropy in the dynamics in the axial direction. We further quantify the effect of inhibiting actin polymerization on the dynamics and find an overall increase in both the apparent diffusion coefficient D* and anomalous diffusion exponent α and a transition to more-isotropic dynamics in 3D after such treatment. We think that in the future our methodology will allow researchers to obtain a better fundamental understanding of chromatin dynamics and how it is altered during disease progression and after perturbations of cellular function.  相似文献   

4.
Cell proliferation is crucial to tissue growth and form during embryogenesis, yet dynamic tracking of cell cycle progression and cell position presents a challenging roadblock. We have developed a fluorescent cell cycle indicator and single cell analysis method, called CycleTrak, which allows for better spatiotemporal resolution and quantification of cell cycle phase and cell position than current methods. Our method was developed on the basis of the existing Fucci method. CycleTrak uses a single lentiviral vector that integrates mKO2-hCdt1 (30/120), and a nuclear-localized eGFP reporter. The single vector and nuclear localized fluorescence signals simplify delivery into cells and allow for rapid, automated cell tracking and cell cycle phase readout in single and subpopulations of cells. We validated CycleTrak performance in metastatic melanoma cells and identified novel cell cycle dynamics in vitro and in vivo after transplantation and 3D confocal time-lapse imaging in a living chick embryo.  相似文献   

5.
The study of intracellular transport pathways at epithelial cell barriers that line diverse tissue sites is fundamental to understanding tissue homeostasis. A major impediment to investigating such processes at the subcellular level has been the lack of imaging approaches that support fast three-dimensional (3D) tracking of cellular dynamics in thick cellular specimens. Here, we report significant advances in multifocal plane microscopy and demonstrate 3D single molecule tracking of rapid protein dynamics in a 10 micron thick live epithelial cell monolayer. We have investigated the transferrin receptor (TfR) pathway, which is not only essential for iron delivery but is also of importance for targeted drug delivery across cellular barriers at specific body sites, such as the brain that is impermeable to blood-borne substances. Using multifocal plane microscopy, we have discovered a cellular process of intercellular transfer involving rapid exchange of Tf molecules between two adjacent cells in the monolayer. Furthermore, 3D tracking of Tf molecules at the lateral plasma membrane has led to the identification of different modes of endocytosis and exocytosis, which exhibit distinct temporal and intracellular spatial trajectories. These results reveal the complexity of the 3D trafficking pathways in epithelial cell barriers. The methods and approaches reported here can enable the study of fast 3D cellular dynamics in other cell systems and models, and underscore the importance of developing advanced imaging technologies to study such processes.  相似文献   

6.
In the last decade, the long-standing biologist's dream of seeing the molecular events within the living cell came true. This technological achievement is largely due to the development of fluorescence microscopy technologies and the advent of green fluorescent protein as a fluorescent probe. Such imaging technologies allowed us to determine the subcellular localization, mobility and transport pathways of specific proteins and even visualize protein-protein interactions of single molecules in living cells. Direct observation of such molecular dynamics can provide important information about cellular events that cannot be obtained by other methods. Thus, imaging of protein dynamics in living cells becomes an important tool for cell biology to study molecular and cellular functions. In this special issue of review articles, we review various imaging technologies of microscope hardware and fluorescent probes useful for cell biologists, with a focus on recent development of live cell imaging.  相似文献   

7.

Background

Multicellular tumor spheroids are models of increasing interest for cancer and cell biology studies. They allow considering cellular interactions in exploring cell cycle and cell division mechanisms. However, 3D imaging of cell division in living spheroids is technically challenging and has never been reported.

Results

Here, we report a major breakthrough based on the engineering of multicellular tumor spheroids expressing an histone H2B fluorescent nuclear reporter protein, and specifically designed sample holders to monitor live cell division dynamics in 3D large spheroids using an home-made selective-plane illumination microscope.

Conclusions

As illustrated using the antimitotic drug, paclitaxel, this technological advance paves the way for studies of the dynamics of cell divion processes in 3D and more generally for the investigation of tumor cell population biology in integrated system as the spheroid model.  相似文献   

8.
光激活荧光蛋白是指用特定光照射时,其荧光特性发生显著改变的一类荧光蛋白。借助光激活荧光蛋白的这种特性,可以实现对活细胞、细胞器或胞内分子的时空标记和追踪。该文介绍了目前光激活荧光蛋白的性质,并从多个方面对其应用进行了概括,包括分子标记与动态分析、蛋白质相互作用、细胞器及细胞组分动态研究、细胞追踪以及在光激活定位显微镜中的应用等,且对目前光激活荧光蛋白在植物分子细胞生物学中的应用进行了详细介绍。  相似文献   

9.
The development of three‐dimensional (3D) cellular architectures during development and pathological processes involves intricate migratory patterns that are modulated by genetics and the surrounding microenvironment. The substrate composition of cell cultures has been demonstrated to influence growth, proliferation and migration in 2D. Here, we study the growth and dynamics of mouse embryonic fibroblast cultures patterned in a tissue sheet which then exhibits 3D growth. Using gradient light interference microscopy (GLIM), a label‐free quantitative phase imaging approach, we explored the influence of geometry on cell growth patterns and rotational dynamics. We apply, for the first time to our knowledge, dispersion‐relation phase spectroscopy (DPS) in polar coordinates to generate the radial and rotational cell mass‐transport. Our data show that cells cultured on engineered substrates undergo rotational transport in a radially independent manner and exhibit faster vertical growth than the control, unpatterned cells. The use of GLIM and polar DPS provides a novel quantitative approach to studying the effects of spatially patterned substrates on cell motility and growth.  相似文献   

10.
Focusing light on infection in four dimensions   总被引:1,自引:0,他引:1  
The fusion of cell biology with microbiology has bred a new discipline, cellular microbiology, in which the primary aim is to understand host-pathogen interactions at a tissue, cellular and molecular level. In this context, we require techniques allowing us to probe infection in situ and extrapolate quantitative information on its spatiotemporal dynamics. To these ends, fluorescent light-based imaging techniques offer a powerful tool, and the state-of-the-art is defined by paradigms using so-called multidimensional (multi-D) imaging microscopy. Multi-D imaging aims to visualize and quantify biological events through time and space and, more specifically, refers to combinations of: three (3D, volume), four (4D, time) and five (5D, multiwavelength)-dimensional recordings. Successful multi-D imaging depends upon understanding the available technologies and their limitations. This is especially true in the field of microbiology where visualization of infectious/pathogenic activities inside living host systems presents particular technical challenges. Thus, as multi-D imaging rapidly becomes a common bench tool to the cellular microbiologist, this review provides the new user with some of the necessary technical insight required to get the best from these methods.  相似文献   

11.
Fluorescence correlation spectroscopy (FCS) is an ideal analytical tool for studying concentrations, propagation, interactions and internal dynamics of molecules at nanomolar concentrations in living cells. FCS analyzes minute fluorescence-intensity fluctuations about the equilibrium of a small ensemble (<10(3)) of molecules. These fluctuations act like a 'fingerprint' of a molecular species detected when entering and leaving a femtoliter-sized optically defined observation volume created by a focused laser beam. In FCS the fluorescence fluctuations are recorded as a function of time and then statistically analyzed by autocorrelation analysis. The resulting autocorrelation curve yields a measure of self-similarity of the system after a certain time delay, and its amplitude describes the normalized variance of the fluorescence fluctuations. By fitting the curves to an appropriate physical model, this method provides precise information about a multitude of measurement parameters, including diffusion coefficients, local concentration, states of aggregation and molecular interactions. FCS operates in real time with diffraction-limited spatial and sub-microsecond temporal resolution. Assessing diverse molecular dynamics within the living cell is a challenge well met by FCS because of its single-molecule sensitivity and high dynamic resolution. For these same reasons, however, intracellular FCS measurements also harbor the large risk of collecting artifacts and thus producing erroneous data. Here we provide a step-by-step guide to the application of FCS to cellular systems, including methods for minimizing artifacts, optimizing measurement conditions and obtaining parameter values in the face of diverse and complex conditions of the living cell. A discussion of advantages and disadvantages of one-photon versus two-photon excitation for FCS is available in Supplementary Methods online.  相似文献   

12.
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell‐seeding methods, cell‐biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three‐dimensional (3‐D) structures and functions of the cell‐seeded scaffold in mesoscopic scale (>2 ~ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth‐resolved molecular characterization of engineered tissues in 3‐D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ.  相似文献   

13.
A high-fidelity computational model using a 3D immersed boundary method is used to study platelet dynamics in whole blood. We focus on the 3D effects of the platelet-red blood cell (RBC) interaction on platelet margination and near-wall dynamics in a shear flow. We find that the RBC distribution in whole blood becomes naturally anisotropic and creates local clusters and cavities. A platelet can enter a cavity and use it as an express lane for a fast margination toward the wall. Once near the wall, the 3D nature of the platelet-RBC interaction results in a significant platelet movement in the transverse (vorticity) direction and leads to anisotropic platelet diffusion within the RBC-depleted zone or cell-free layer (CFL). We find that the anisotropy in platelet motion further leads to the formation of platelet clusters, even in the absence of any platelet-platelet adhesion. The transverse motion, and the size and number of the platelet clusters are observed to increase with decreasing CFL thickness. The 3D nature of the platelet-RBC collision also induces fluctuations in off-shear plane orientation and, hence, a rotational diffusion of the platelets. Although most marginated platelets are observed to tumble just outside the RBC-rich zone, platelets further inside the CFL are observed to flow with an intermittent dynamics that alters between sliding and tumbling, as a result of the off-shear plane rotational diffusion, bringing them even closer to the wall. To our knowledge, these new findings are based on the fundamentally 3D nature of the platelet-RBC interaction, and they underscore the importance of using cellular-scale 3D models of whole blood to understand platelet margination and near-wall platelet dynamics.  相似文献   

14.
Molecular dynamics simulations were carried out on two conformations of the dinucleoside monophosphate guanylyl-3',5'-uridine (GpU) in aqueous solution with one sodium counterion. One stacked conformation and one with the C3'-O3'-P-O5' backbone torsion angle twisted 180 degrees to create an unstacked conformation. We observed a relatively stable behavior of the stacked conformation, which remained stacked throughout the simulation, whereas the unstacked conformation showed major changes in the backbone torsion and glycosidic angles. During the simulation the unstacked conformation transformed into a more stacked form and then back again to an unstacked one. The calculated correlation times for rotational diffusion from the molecular dynamics simulations are in agreement with fluorescence anisotropy and nuclear magnetic resonance data. As expected, the correlation times for rotational diffusion of the unstacked conformation were observed to be longer than for the stacked conformation. The 2'OH group may contribute in stabilizing the stacked conformation, where the O2'-H...O4' hydrogen bond occurred in 82.7% of the simulation.  相似文献   

15.
Packing defects in lipid bilayer play a significant role in the biological activities of cell membranes. Time-resolved fluorescence depolarization has been used to detect and characterize the onset of packing defects in binary mixtures of dilinoleoylphosphatidylethanolamine/1-palmitoyl-2- oleoylphosphatidylcholine (PE/PC). These PE/PC mixtures exhibit mesoscopic packing defect state (D), as well as one-dimensional lambellar liquid crystalline (L alpha) and two-dimensional inverted hexagonal (HII) ordered phases. Based on previous electron microscopic investigations, this D state is characterized by the presence of interlamellar attachments and precursors of HII phase between the lipid layers. Using a rotational diffusion model for rod-shaped fluorophore in a curved matrix, rotational dynamics parameters, second rank order parameter, localized wobbling diffusion, and curvature-dependent rotational diffusion constants of dipyenylhexatriene (DPH)-labeled PC (DPH-PC) in the host PE/PC matrix were recovered from the measured fluorescence depolarization decays of DPH fluorescence. At approximately 60% PE, abrupt increases in these rotational dynamics parameters were observed, reflecting the onset of packing defects in the host PE/PC matrix. We have demonstrated that rotational dynamics parameters are very sensitive in detecting the onset of curvature-associating packing defects in lipid membranes. In addition, the presence of the D state can be characterized by the enhanced wobbling diffusional motion and order packing of lipid molecules, and by the presence of localized curvatures in the lipid layers.  相似文献   

16.
A high-fidelity computational model using a 3D immersed boundary method is used to study platelet dynamics in whole blood. We focus on the 3D effects of the platelet-red blood cell (RBC) interaction on platelet margination and near-wall dynamics in a shear flow. We find that the RBC distribution in whole blood becomes naturally anisotropic and creates local clusters and cavities. A platelet can enter a cavity and use it as an express lane for a fast margination toward the wall. Once near the wall, the 3D nature of the platelet-RBC interaction results in a significant platelet movement in the transverse (vorticity) direction and leads to anisotropic platelet diffusion within the RBC-depleted zone or cell-free layer (CFL). We find that the anisotropy in platelet motion further leads to the formation of platelet clusters, even in the absence of any platelet-platelet adhesion. The transverse motion, and the size and number of the platelet clusters are observed to increase with decreasing CFL thickness. The 3D nature of the platelet-RBC collision also induces fluctuations in off-shear plane orientation and, hence, a rotational diffusion of the platelets. Although most marginated platelets are observed to tumble just outside the RBC-rich zone, platelets further inside the CFL are observed to flow with an intermittent dynamics that alters between sliding and tumbling, as a result of the off-shear plane rotational diffusion, bringing them even closer to the wall. To our knowledge, these new findings are based on the fundamentally 3D nature of the platelet-RBC interaction, and they underscore the importance of using cellular-scale 3D models of whole blood to understand platelet margination and near-wall platelet dynamics.  相似文献   

17.
A precise spatio-temporal regulation of growth and differentiation is crucial to maintain a stable population of stem cells in the shoot apical meristems (SAMs) of higher plants. The real-time and simultaneous observations of dynamics of cell identity transitions, growth patterns, and signaling machinery involved in cell-cell communication is crucial to gain a mechanistic view of stem-cell homeostasis. In this article, I review recent advances in understanding the regulatory dynamics of stem-cell maintenance in Arabidopsis thaliana and discuss future challenges involved in transforming the static maps of genetic interactions into a dynamic framework representing functional molecular and cellular interactions in living SAMs.  相似文献   

18.
Ram S  Prabhat P  Chao J  Ward ES  Ober RJ 《Biophysical journal》2008,95(12):6025-6043
Single particle tracking in three dimensions in a live cell environment holds the promise of revealing important new biological insights. However, conventional microscopy-based imaging techniques are not well suited for fast three-dimensional (3D) tracking of single particles in cells. Previously we developed an imaging modality multifocal plane microscopy (MUM) to image fast intracellular dynamics in three dimensions in live cells. Here, we introduce an algorithm, the MUM localization algorithm (MUMLA), to determine the 3D position of a point source that is imaged using MUM. We validate MUMLA through simulated and experimental data and show that the 3D position of quantum dots can be determined over a wide spatial range. We demonstrate that MUMLA indeed provides the best possible accuracy with which the 3D position can be determined. Our analysis shows that MUM overcomes the poor depth discrimination of the conventional microscope, and thereby paves the way for high accuracy tracking of nanoparticles in a live cell environment. Here, using MUM and MUMLA we report for the first time the full 3D trajectories of QD-labeled antibody molecules undergoing endocytosis in live cells from the plasma membrane to the sorting endosome deep inside the cell.  相似文献   

19.
bR, N-like and O-like intermediate states of [15N]methionine-labelled wild type and D85N/T170C bacteriorhodopsin were accumulated in native membranes by controlling the pH of the preparations. 15N cross polarization and magic angle sample spinning (CPMAS) NMR spectroscopy allowed resolution of seven out of nine resonances in the bR-state. It was possible to assign some of the observed resonances by using 13C/15N rotational echo double resonance (REDOR) NMR and Mn2+ quenching as well as D2O exchange, which helps to identify conformational changes after the bacteriorhodopsin Schiff base reprotonation. The significant differences in chemical shifts and linewidths detected for some of the resonances in N- and O-like samples indicate changes in conformation, structural heterogeneity or altered molecular dynamics in parts of the protein.  相似文献   

20.
光激活荧光蛋白是指用特定光照射时, 其荧光特性发生显著改变的一类荧光蛋白。借助光激活荧光蛋白的这种特性,可以实现对活细胞、细胞器或胞内分子的时空标记和追踪。该文介绍了目前光激活荧光蛋白的性质, 并从多个方面对其应用进行了概括, 包括分子标记与动态分析、蛋白质相互作用、细胞器及细胞组分动态研究、细胞追踪以及在光激活定位显微镜中的应用等, 且对目前光激活荧光蛋白在植物分子细胞生物学中的应用进行了详细介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号