首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effects of intense submicrosecond electrical pulses on cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the sub-microsecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 micros-60 ns, electric field intensities 3-150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of increased surface membrane permeability. For nanosecond pulses, more delayed propidium iodide uptake occurred with significantly later uptake of propidium iodide occurring after 60 ns pulses compared to 300 ns pulses. Cellular swelling occurred rapidly following 300 ns pulses, but was minimal following 60 ns pulses. These data indicate that submicrosecond pulses achieve temporally distinct effects on living cells compared to microsecond pulses. The longer pulses result in rapid permeability changes in the surface membrane that are relatively homogeneous across the cell population, consistent with electroporation, while shorter pulses cause surface membrane permeability changes that are temporally delayed and heterogeneous in their magnitude.  相似文献   

2.
During apoptosis, a number of physical changes occur in the cell membrane including a gradual increase in permeability to vital stains such as propidium iodide. This study explored the possibility that one consequence of membrane changes concurrent with early modest permeability is vulnerability to degradation by secretory phospholipase A(2). The activity of this hydrolytic enzyme toward mammalian cells depends on the health of the cell; healthy cells are resistant, but they become susceptible early during programmed death. Populations of S49 lymphoma cells during programmed death were classified by flow cytometry based on permeability to propidium iodide and susceptibility to secretory phospholipase A(2). The apoptotic inducers thapsigargin and dexamethasone caused modest permeability to propidium iodide and increased staining by merocyanine 540, a dye sensitive to membrane perturbations. Various secretory phospholipase A(2) isozymes (human groups IIa, V, X, and snake venom) preferentially hydrolyzed the membranes of cells that displayed enhanced permeability. In contrast, cells exposed briefly to a calcium ionophore showed the increase in cell staining intensity by merocyanine 540 without accompanying uptake of propidium iodide. Under that condition, only the snake venom and human group X enzymes hydrolyzed cells that were dying. These results suggested that cells showing modest permeability to propidium iodide during the early phase of apoptosis are substrates for secretory phospholipase A(2) and that specificity among isoforms of the enzyme depends on the degree to which the membrane has been perturbed during the death process. This susceptibility to hydrolysis may be important as part of the signal to attract macrophages toward apoptotic cells.  相似文献   

3.
It is widely accepted that electroporation occurs when the cell transmembrane voltage induced by an external applied electric field reaches a threshold. Under this assumption, in order to trigger electroporation in a spherical cell, Schwan’s equation leads to an inversely proportional relationship between the cell radius and the minimum magnitude of the applied electric field. And, indeed, several publications report experimental evidences of an inverse relationship between the cell size and the field required to achieve electroporation. However, this dependence is not always observed or is not as steep as predicted by Schwan’s equation. The present numerical study attempts to explain these observations that do not fit Schwan’s equation on the basis of the interplay between cell membrane conductivity, permeability, and transmembrane voltage. For that, a single cell in suspension was modeled and the electric field necessary to achieve electroporation with a single pulse was determined according to two effectiveness criteria: a specific permeabilization level, understood as the relative area occupied by the pores during the pulse, and a final intracellular concentration of a molecule due to uptake by diffusion after the pulse, during membrane resealing. The results indicate that plausible model parameters can lead to divergent dependencies of the electric field threshold on the cell radius. These divergent dependencies were obtained through both criteria and using two different permeabilization models. This suggests that the interplay between cell membrane conductivity, permeability, and transmembrane voltage might be the cause of results which are noncompatible with the Schwan’s equation model.  相似文献   

4.
Previous studies have shown greater fluorophore uptake during electroporation on the anode-facing side of the cell than on the cathode-facing side. Based on these observations, we hypothesized that hyperpolarizing a cell before electroporation would decrease the requisite pulsed electric field intensity for electroporation outcomes, thereby yielding a higher probability of reversible electroporation at lower electric field strengths and a higher probability of irreversible electroporation (IRE) at higher electric field strengths. In this study, we tested this hypothesis by hyperpolarizing HL-60 cells using ionomycin before electroporation. These cells were then electroporated in a solution containing propidium iodide, a membrane integrity indicator. After 20 min, we added trypan blue to identify IRE cells. Our results showed that hyperpolarizing cells before electroporation alters the pulsed electric field intensity thresholds for reversible electroporation and IRE, allowing for greater control and selectivity of electroporation outcomes.  相似文献   

5.
T-cadherin is a unique member of the cadherin superfamily of adhesion molecules. In contrast to “classical” cadherins, T-cadherin lacks transmembrane and cytoplasmic domains and is anchored to the cell membrane via a glycosilphosphoinositol moiety. T-cadherin is predominantly expressed in cardiovascular system. Clinical and biochemical studies evidence that expression of T-cadherin increases in post-angioplasty restenosis and atherosclerotic lesions—conditions associated with endothelial dysfunction and pathological expression of adhesion molecules. Here, we provide data suggesting a new signaling mechanism by which T-cadherin regulates endothelial permeability. T-cadherin overexpression leads to VE-cadherin phosphorylation on Y731 (β-catenin-binding site), VE-cadherin clathrin-dependent endocytosis and its degradation in lysosomes. Moreover, T-cadherin overexpression results in activation of Rho GTPases signaling and actin stress fiber formation. Thus, T-cadherin up-regulation is involved in degradation of a key endothelial adhesion molecule, VE-cadherin, resulting in the disruption of endothelial barrier function. Our results point to the role of T-cadherin in regulation of endothelial permeability and its possible engagement in endothelial dysfunction.  相似文献   

6.
Summary Flow cytometry was used to provide a rapid and accurate assessment of electroporation-induced uptake of macromolecules into plant protoplasts. Rice protoplasts were electroporated in the presence of fluorescein isothiocyanate-conjugated dextran (FITC-dextran). After washing, the protoplasts were resuspended in a solution containing propidium iodide which intercalates with DNA, but which is excluded by an intact plasma membrane. Electroporation in the presence of FITC-dextran gave rise to populations of protoplasts that fluoresced green or yellow due to the presence of non-conjugated FITC. Non-viable protoplasts fluoresced red because of their inability to exclude propidium iodide molecules. Flow cytometry was used to resolve and quantify these protoplast populations and thus identify optimal conditions for macromolecule uptake. A direct relationship was observed between FITC-dextran uptake and transient gene expression following plasmid uptake. Thus, simultaneous electroporation of protoplasts with foreign DNA and FITC-dextran followed by fluorescence activated cell sorting may permit partial selection of transformed cells and so reduce the need for a selectable marker.Abbreviations ADC analogue to digital converter - CAT chloramphenicol acetyl transferase (enzyme) - cat chloramphenicol acetyl transferase (gene) - CPW solution cell and protoplast wash solution - DC direct current - EF electrofusion - FALS forward angle light scatter - FITC fluorescein isothiocyanate - FITC-dextran fluorescein isothiocyanate conjugated dextran - PI propidium iodide - PMT photomultipliertube - TLC thin layer chromatography  相似文献   

7.
A novel electroporation system employing an oscillating electric pulse and centrifugal force was used to introduce extraneous proteins into CHO cells. Following the electrical pulse, the compression and subsequent rebound induced by the centrifugal acceleration and deceleration, respectively, enhanced protein uptake, presumably by a hydrodynamic pumping of extracellular solutions through the permeabilized membrane. Protein uptake was quantitated by measuring the amount of radiolabeled, extraneous, CHO proteins introduced into unlabeled CHO cells. The amount of protein introduced into electroporated CHO cells was enhanced up to four-fold by a combination of electric pulse and centrifugal force compared to that introduced by electric pulse only. The optimum gradient of centrifugal force (GCF, temporal change of centrifugal force) was 590 and -470 g/s during acceleration and deceleration, respectively. The optimum electric field was 5 kV/cm with a 30-microsecond pulse length. At this optimum electroporation condition, approximately 5 pg of proteins (up to 200 kDa molecular weight) were introduced per CHO cell. These same settings also permitted electroporation of other membrane impermeable substances including propidium iodide and ethidium bromide. Introduction of extraneous materials into the cytoplasm during electroporation was confirmed by the ability of anti alpha-tubulin to stain the microtubules and propidium iodide and ethidium bromide to stain the nuclei. Cells electroporated with optimum device settings exhibited no significant decrease in clonogenic survival.  相似文献   

8.
Cryopreservation, directed differentiation, and genetic manipulation of human embryonic stem cells (hESCs) all require the transport of exogenous small molecules, proteins, or DNA into the cell. The absence of standard small and macromolecule loading techniques in hESCs as well as the inadequacies of current DNA transfection techniques have led us to develop electroporation as an efficient loading and transfection methodology. The electroporation parameters of pulse voltage, duration, and number have been explored and evaluated in terms of cell viability, molecular loading, and transfection efficiency on a per cell basis. Small molecule loading was assessed using propidium iodide (PI) and the disaccharide trehalose. Additionally, protein loading was investigated using a glutathione-S-transferase green fluorescent protein (GST-GFP) conjugate, and DNA transfection optimization was performed by constitutive expression of GFP from a plasmid. The optimum pulse voltage must balance cell viability, which decreases as voltage increases, and loading efficiency, which increases at higher voltages. Short pulse times of 0.05 ms facilitated PI and trehalose loading, whereas 0.5 ms or more was required for GST-GFP loading and DNA transfection. Multiple pulses increased per cell loading of all molecules, though there was a dramatic loss of viability with GST-GFP loading and DNA transfection, likely resulting from the longer pulse duration required to load these molecules.  相似文献   

9.
Flow cytometric monitoring of propidium iodide (PI) uptake is a well-established and rapid method for monitoring cell death and is used on the basis that the intact membrane of viable cells excludes the propidium ion and that loss of this permeability barrier represents irreparable damage and thus cell death. These assumptions are typically based on analysis of live and killed cells. Here we have identified stress levels that lead to a loss of viability of a proportion of Saccharomyces cerevisiae cells and under these conditions we show that there is a subpopulation of cells that can take up PI during and immediately following exposure to stress but that a short incubation allows repair of the membrane damage such that subsequent exposure to PI does not result in staining. Irrespective of the stress applied, approximately 7% of cells exhibited the ability to repair. These results indicate that the level of damage that the yeast cell membrane can sustain and yet retain the ability to repair is greater than previously recognized and care must therefore be taken in using the terms 'PI-positive' and 'dead' synonymously. We discuss these findings in the context of the potential for such environmental stress-induced, transient membrane permeability to have evolutionary implications via the facilitation of horizontal gene transfer.  相似文献   

10.
An increased permeability of a cell membrane during the application of high-voltage pulses results in increased transmembrane transport of molecules that otherwise cannot enter the cell. Increased permeability of a cell membrane is accompanied by increased membrane conductivity; thus, by measuring electric conductivity the extent of permeabilized tissue could be monitored in real time. In this article the effect of cell electroporation caused by high-voltage pulses on the conductivity of a cell suspension was studied by current-voltage measurements during and impedance measurement before and after the pulse application. At the same time the percentage of permeabilized and survived cells was determined and the extent of osmotic swelling measured. For a train of eight pulses a transient increase in conductivity of a cell suspension was obtained above permeabilization threshold in low- and high-conductive medium with complete relaxation in <1 s. Total conductivity changes and impedance measurements showed substantial changes in conductivity due to the ion efflux in low-conductive medium and colloid-osmotic swelling in both media. Our results show that by measuring electric conductivity during the pulses we can detect limit permeabilization threshold but not directly permeabilization level, whereas impedance measurements in seconds after the pulse application are not suitable.  相似文献   

11.
Electric pulses are known to affect the outer membrane and intracellular structures of tumour cells. By applying electrical pulses of 450 ns duration with electric field intensity of 8 kV/cm to HepG2 cells for 30 s, electric pulse‐induced changes in the integrity of the plasma membrane, apoptosis, viability and mitochondrial transmembrane potential were investigated. Results demonstrated that electric pulses induced cell apoptosis and necrosis accompanied with the decrease of mitochondrial transmembrane potential and the formation of pores in the membrane. The role of cytoskeleton in cellular response to electric pulses was investigated. We found that the apoptotic and necrosis percentages of cells in response to electric pulses decreased after cytoskeletal disruption. The electroporation of cell was not affected by cytoskeletal disruption. The results suggest that the disruption of actin skeleton is positive in protecting cells from killing by electric pulses, and the skeleton is not involved in the electroporation directly.  相似文献   

12.
The use of flow cytometry in microbiology allows rapid characterization of cells from a nonhomogeneous population. A method based on flow cytometry to assess the effects of lethal agents and the bacterial survival in starved cultures through the use of membrane potential-sensitive dyes and a nucleic acid marker is presented. The use of propidium iodide, rhodamine, and oxonol has facilitated the differentiation of cells of Escherichia coli and Salmonella typhimurium of various states of vitality following various treatments (heat, sonication, electroporation, and incubation with gramicidin) and during starvation in artificial seawater. The fluorescence intensity is directly correlated with viable cell counts for rhodamine 123 labelling, whereas oxonol and propidium iodide labelling is inversely correlated with viable counts. The distribution of rhodamine and oxonol uptake during starvation-survival clearly indicates that single-species starved bacteria are heterogeneous populations, and flow cytometry can be a fundamental tool for quantifying this heterogeneity.  相似文献   

13.
《Biophysical journal》2022,121(9):1593-1609
The lipid bilayer of eukaryotic cells’ plasma membrane is almost impermeable to small ions and large polar molecules, but its miniscule basal permeability in intact cells is poorly characterized. This report describes the intrinsic membrane permeability of A549 cells toward the charged molecules propidium (Pr2+) and ATP4?. Under isotonic conditions, we detected with quantitative fluorescence microscopy, a continuous low-rate uptake of Pr (~150 × 10?21 moles (zmol)/h/cell, [Pr]o = 150 μM, 32°C). It was stimulated transiently but strongly by 66% hypotonic cell swelling reaching an influx amplitude of ~1500 (zmol/h)/cell. The progressive Pr uptake with increasing [Pr]o (30, 150, and 750 μM) suggested a permeation mechanism by simple diffusion. We quantified separately ATP release with custom wide-field-of-view chemiluminescence imaging. The strong proportionality between ATP efflux and Pr2+ influx during hypotonic challenge, and the absence of stimulation of transmembrane transport following 300% hypertonic shock, indicated that ATP and Pr travel the same conductive pathway. The fluorescence images revealed a homogeneously distributed intracellular uptake of Pr not consistent with high-conductance channels expressed at low density on the plasma membrane. We hypothesized that the pathway consists of transiently formed water pores evenly spread across the plasma membrane. The abolition of cell swelling-induced Pr uptake with 500 μM gadolinium, a known modulator of membrane fluidity, supported the involvement of water pores whose formation depends on the membrane fluidity. Our study suggests an alternative model of a direct permeation of ATP (and other molecules) through the phospholipid bilayer, which may have important physiological implications.  相似文献   

14.
Fluorescent and fluorescent-labeled molecules were used with calibrated flow cytometric fluorescence measurements of electrically pulsed cells (intact yeast: Saccharomyces cerevisiae) to demonstrate a method for determining the net number of molecules transported into electroporated cells. For the conditions used, a single pulse of width 50 microseconds and magnitude 8.0 +/- 0.5 kV/cm resulted in an average net molecular uptake which is large, n = 1.4 x 10(5) molecules of 70 kDa FITC-dextran (supplied extracellular concentration of 500 microM), and n = 1.0 x 10(8) molecules of 660 Da propidium iodide (PI; 80 microM). Both molecules were present in pulsed cells at less than equilibrium values, consistent with a transient uptake mechanism. Intracellular FITC-dextran is present in soluble form, while PI is predominantly bound to nucleic acids. A broad, statistically significant distribution of molecular uptake was also observed. Such quantitative determinations should be important for guiding applications of electroporation, and for testing models of electroporation mechanisms. Further, the use of PI, which is well established as a membrane exclusion dye, provides additional support for the interpretation that both PI and FITC-dextran were internalized as a result of an electrical pulse.  相似文献   

15.
Exposing eukaryotic cells to brief, high voltage electrical fields can induce the uptake of exogenous materials, presumably through the transient formation of micropores in the cell membrane. This phenomenon has been exploited for the introduction of cloned DNA molecules into cells for permanent transformation or for transient expression and analysis of gene products. The magnitude and characteristics of the generated electrical field are critical for successful electroporation and simple, transient expression assays using indicator genes allow the calibration and optimization of electroporation conditions for a wide variety of eukaryotic cell types. These techniques may allow the genetic modification of a variety of host cells which cannot be easily transformed by other methods.  相似文献   

16.
We studied the effects of Amphotericin B (AmB) on Cryptococcus neoformans using different viability methods (CFUs enumeration, XTT assay and propidium iodide permeability). After 1h of incubation, there were no viable colonies when the cells were exposed to AmB concentrations ≥ 1 mg/L. In the same conditions, the cells did not become permeable to propidium iodide, a phenomenon that was not observed until 3h of incubation. When viability was measured in parallel using XTT assay, a result consistent with the CFUs was obtained, although we also observed a paradoxical effect in which at high AmB concentrations, a higher XTT reduction was measured than at intermediate AmB concentrations. This paradoxical effect was not observed after 3h of incubation with AmB, and lack of XTT reduction was observed at AmB concentrations higher than 1mg/L. When stained with dihydrofluorescein, AmB induced a strong intracellular oxidative burst. Consistent with oxidative damage, AmB induced protein carbonylation. Our results indicate that in C. neoformans, Amphotericin B causes intracellular damage mediated through the production of free radicals before damage on the cell membrane, measured by propidium iodide uptake.  相似文献   

17.
Recently, it was shown that actin molecules are present in human immunodeficiency virus type 1 (HIV-1) particles. We have examined the basis for incorporation and the location of actin molecules within HIV-1 and murine retrovirus particles. Our results show that the retroviral Gag polyprotein is sufficient for actin uptake. Immunolabeling studies demonstrate that actin molecules localize to a specific radial position within the immature particle, clearly displaced from the matrix domain underneath the viral membrane but in proximity to the nucleocapsid (NC) domain of the Gag polyprotein. When virus or subviral Gag particles were disrupted with nonionic detergent, actin molecules remained associated with the disrupted particles. Actin molecules remained in a stable complex with the NC cleavage product (or an NC-RNA complex) after treatment of the disrupted HIV-1 particles with recombinant HIV-1 protease. In contrast, matrix and capsid molecules were released. The same result was obtained when mature HIV-1 particles were disrupted with detergent. Taken together, these results indicate that actin molecules are associated with the NC domain of the viral polyprotein.  相似文献   

18.
Electropermeabilization (electroporation) is a technique widely used to introduce various membrane-impermeable molecules into cells in vitro or in vivo. In this study we determined the effect of different electric-field intensities on electropermeabilization and electrosensitivity of a variety of tumor-cell lines in vitro. For this purpose we used two assays: propidium iodide uptake for measurement of cell electropenneabilization, and the clono-genic or MTT assay for determination of electrosensitivity. Our results showed that electropermeabilization of almost all cell lines tested occurred at 600 V/cm. In contrast, a marked difference in electrosensitivity existed among these cell lines. Our results could be of great importance for pharmacological and biochemical studies in vilro, and for prediction and determination of tumor response in vivo to electropermeabilization combined with chemo-therapeutic drugs (electrochemotherapy) and gene therapy.  相似文献   

19.
The action of a blood serum complement on Escherichia coli cells or their freezing does not cause cell destruction visible in the electron microscope, but the permeability barrier is disordered and exogenous substrates can penetrate into the cell. When these exogenous respiration substrates are oxidised, the energy-dependent uptake of phenyl dicarboundecarborane (PCB-), a lipophilic anion and an indicator of the membrane potential, is observed. Apparently, the uptake of PCB- is associated with the generation of local membrane potentials when the permeability barrier of cells is damaged.  相似文献   

20.
We have conducted experiments quantitatively investigating electroporative uptake kinetics of a fluorescent plasma membrane integrity indicator, propidium iodide (PI), in HL60 human leukemia cells resulting from exposure to 40 μs pulsed electric fields (PEFs). These experiments were possible through the use of calibrated, real-time fluorescence microscopy and the development of a microcuvette: a specialized device designed for exposing cell cultures to intense PEFs while carrying out real-time microscopy. A finite-element electrostatic simulation was carried out to assess the degree of electric field heterogeneity between the microcuvette's electrodes allowing us to correlate trends in electroporative response to electric field distribution. Analysis of experimental data identified two distinctive electroporative uptake signatures: one characterized by low-level, decelerating uptake beginning immediately after PEF exposure and the other by high-level, accelerating fluorescence that is manifested sometimes hundreds of seconds after PEF exposure. The qualitative nature of these fluorescence signatures was used to isolate the conditions required to induce exclusively transient electroporation and to discuss electropore stability and persistence. A range of electric field strengths resulting in transient electroporation was identified for HL60s under our experimental conditions existing between 1.6 and 2 kV/cm. Quantitative analysis was used to determine that HL60s experiencing transient electroporation internalized between 50 and 125 million nucleic acid-bound PI molecules per cell. Finally, we show that electric field heterogeneity may be used to elicit asymmetric electroporative PI uptake within cell cultures and within individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号