首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have recently demonstrated that amino acid region 323-331 of factor Va heavy chain (9 amino acids, AP4') contains a binding site for factor Xa (Kalafatis, M., and Beck, D. O. (2002) Biochemistry 41, 12715-12728). To ascertain which amino acids within this region are important for the effector and receptor properties of the cofactor with respect to factor Xa, we have synthesized three overlapping peptides (5 amino acids each) spanning the amino acid region 323-331 and tested them for their effect on prothrombinase complex assembly and function. Peptide containing amino acids 323EYFIA327 alone was found to increase the catalytic efficiency of factor Xa but had no effect on the fluorescent anisotropy of active site-labeled factor Xa (human factor Xa labeled in the active site with Oregon Green 488; [OG488]-EGR-hXa). In contrast, peptide containing the sequence 327AAEEV331 was found to interact with [OG488]-EGR-hXa with half-maximal saturation reached at approximately 150 microm, but it was unable to produce a cofactor effect on factor Xa. Peptide 325FIAAE329 inhibited prothrombinase activity and was able to partially decrease the fluorescent anisotropy of [OG488]-EGR-hXa but could not increase the catalytic efficiency of factor Xa with respect to prothrombin. A control peptide with the sequence FFFIA did not increase the catalytic efficiency of factor Xa, whereas a peptide with the sequence AAEMI was impaired in its capability to interact with [OG488]-EGR-hXa. Two mutant recombinant factor Va molecules (Glu323 --> Phe/Tyr324 --> Phe, factor VaFF; Glu330 --> Met/Val331 --> Ile, factor VaMI) showed impaired cofactor activity when used at limiting cofactor concentration, whereas the quadruple mutant (Glu323 --> Phe/Tyr324 --> Phe and Glu330 --> Met/Val331 --> Ile, factor VaFF/MI) had no cofactor activity under similar experimental conditions. Our data demonstrate that amino acid residues Glu323, Tyr324, Glu330, and Val331 of factor Va heavy chain are critical for expression of factor Va cofactor activity.  相似文献   

2.
【目的】探究磷酸核糖焦磷酸(PRPP)合成酶(prs)和氨甲酰磷酸合成酶(pyr AA/pyr AB)的点突变,以及异源5′-核苷酸酶(sdt1)的过表达,对枯草芽孢杆菌尿苷生物合成的影响。【方法】依据推断的变构位点,分别在prs基因和pyr AB基因编码序列中引入点突变;将点突变的prs基因在染色体xyl R位点整合表达,pyr AB基因则在染色体原位被修饰;sdt1基因在染色体sac B位点整合过表达。通过对重组菌摇瓶发酵液中尿苷、胞苷和尿嘧啶的分析,表征相关基因修饰对尿苷合成的影响。【结果】在PRPP合成酶中引入Asn120Ser、Leu135Ile和Glu52Gly或Val312Ala点突变,分别导致尿苷积累量提高67%和96%。进一步在氨甲酰磷酸合成酶中引入Ser948Phe、Thr977Ala和Lys993Ile点突变,导致尿苷积累量又增加了182%,达到6.97 g/L。在此基础上,过表达异源5′-核苷酸酶,导致尿苷产量增加17%,达到8.16 g/L。【结论】PRPP合成酶和氨甲酰磷酸合成酶的酶活或反馈抑制调节机制,是限制尿苷过量合成的重要因素。PRPP合成酶的Asn120Ser和Leu135Ile点突变,以及氨甲酰磷酸合成酶的Ser948Phe、Thr977Ala和Lys993Ile点突变,能够显著促进尿苷合成。PRPP合成酶附加的Glu52Gly或Val312Ala点突变,有利于尿苷合成。异源的嘧啶专一性5′-核苷酸酶的引入,也对尿苷的合成有明显的促进作用。  相似文献   

3.
Using directed evolution and site‐directed mutagenesis, we have isolated a highly thermostable variant of Aspergillus niger glucoamylase (GA), designated CR2‐1 . CR2‐1 includes the previously described mutations Asn20Cys and Ala27Cys (forming a new disulfide bond), Ser30Pro, Thr62Ala, Ser119Pro, Gly137Ala, Thr290Ala, His391Tyr and Ser436Pro. In addition, CR2‐1 includes several new putative thermostable mutations, Val59Ala, Val88Ile, Ser211Pro, Asp293Ala, Thr390Ser, Tyr402Phe and Glu408Lys, identified by directed evolution. CR2‐1 GA has a catalytic efficiency (kcat/Km) at 35°C and a specific activity at 50°C similar to that of wild‐type GA. Irreversible inactivation tests indicated that CR2‐1 increases the free energy of thermoinactivation at 80°C by 10 kJ mol?1 compared with that of wild‐type GA. Thus, CR2‐1 is more thermostable (by 5 kJ mol?1 at 80°C) than the most thermostable A. niger GA variant previously described, THS8 . In addition, Val59Ala and Glu408Lys were shown to individually increase the thermostability in GA variants by 1 and 2 kJ mol?1, respectively, at 80°C.  相似文献   

4.
Carbonic anhydrase I (CAI) is one out of ten CA isoenzymes that have been identified in humans. X-ray crystallographic and inhibitor complex studies of human carbonic anhydrase I (HCAI) and related studies in other CA isoenzymes identified several residues, in particular Thr199, GlulO6, Tyr7, Glull7, His l07, with likely involvement in the catalytic activity of HCAI. To further study the role of these residues, we undertook, site-directed mutagenesis of HCAI. Using a polymerase chain reaction based strategy and altered oligonucleotide primers, we modified a cloned wild type hCAI gene so as to produce mutant genes encoding proteins with single amino acid substitutions. Thrl99Val, Thrl99Cys, Thr199Ser, GlulO6Ile, Glul06Gln, Tyr7Trp, Glu.117Gln, and His 107Val mutations were thus generated and the activity of each measured by ester hydrolysis. Overproduction of the Glu117Gln and HisI07Val mutant proteins inEscherichia coli resulted in a large proportion of the enzyme forming aggregates probably due to folding defect. The mutations Thr199Val, GlulO6Ile and GlulO6Gln gave soluble protein with drastically reduced enzyme activity, while the Tyr7Trp mutation had only marginal effect on the activity, thus s.uggesting important roles for Thr199 and Glu lO6 but not for Tyr7 in the catalytic function of HCAI.  相似文献   

5.
Using computer-aided design of single-site mutations, three amino acid residues determined by changes in folding free energy between wild-type (wt) and mutant proteins were exchanged to enhance the stability of pyruvate formate-lyase (PFL). The mutant enzymes were tested for properties such as optimum temperature, optimum pH, kinetic parameters, and stability to temperature. There were two mutant variants, Glu336Cys and Glu400Ile, that exhibited increased thermostability as compared to the wt enzyme. The melting temperatures (T m, the temperature at which 50% inactivation occurs after heat treatment for 20 min) of Glu336Cys and Glu400Ile increased by 3.7 and 2.2 respectively. They also showed an increase in half life of about 1.80 and 2.21-fold, whereas Ala273Cys showed a slight decrease as compared with the wt enzyme.  相似文献   

6.
A gene encoding a thermostable Acremonium ascorbate oxidase (ASOM) was randomly mutated to generate mutant enzymes with altered pH optima. One of the mutants, which exhibited a significantly higher activity in the pH range 4.5-7 compared to ASOM, had a Gln183Arg substitution in the region corresponding to SBR1, one of the substrate binding regions of the zucchini enzyme. The other mutant with almost the same pH profile as Gln183Arg had a Thr527Ala substitution near the type 3 copper center and became more sensitive to azide than ASOM. Site-directed mutagenesis in the substrate binding regions with reference to the amino acid sequences of plant enzymes led to isolation of mutants shifted upward in the pH optimum; Val193Pro and Val193Pro/Pro190Ile increased the pH optimum by 1 and 0.5 units, respectively, while retaining the near-wild-type thermostability and azide sensitivity. The homology model of ASOM constructed from the zucchini enzyme coordinates suggested that replacement of Val193 by Pro could disturb the ion pair networks among Arg309, Glu192, Arg194 and Glu311. This perturbation could affect either the molecular recognition between the substrate and ASOM or the electron transfer from the substrate to the type 1 copper center, leading to the alkaline shift of the catalytic activity of the mutant enzyme. The other mutations, Val193Pro/Pro190Ile, could also induce similar structural perturbations involving the ion pair networks.  相似文献   

7.
The multiphosphorylated tryptic peptide αs1‐casein(59–79) has been shown to be antigenic with anti‐casein antibodies. In an approach to determine the amino acyl residues critical for antibody binding we undertook an epitope analysis of the peptide using overlapping synthetic peptides. With αs1‐casein(59–79) as the adsorbed antigen in a competitive ELISA only two of five overlapping synthetic peptides at 1 mM significantly inhibited binding of the anti‐casein antibodies. Peptides Glu‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu and Ile‐Val‐Pro‐Asn‐Ser(P)‐Val‐Glu‐Glu inhibited antibody binding by 20.0±3.6% and 60.3±7.9%, respectively. The epitope of Glu63‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu70 was further localised to the phosphoseryl cluster as the peptide Ser(P)‐Ser(P)‐Ser(P) significantly inhibited binding of the anti‐casein antibodies to αs1‐casein(59–79) by 29.5±7.4%. Substitution of Ser(P)75 with Ser75 in the second inhibitory peptide Ile‐Val‐Pro‐Asn‐Ser(P)75‐Val‐Glu‐Glu also abolished inhibition of antibody binding to αs1‐casein (59–79) demonstrating that Ser(P)75 is also a critical residue for recognition by the antibodies. These data show that the phosphorylated residues in the cluster sequence ‐Ser(P)66‐Ser(P)‐Ser(P)68 and in the sequence ‐Pro73‐Asn‐Ser(P)‐Val‐Glu77‐ are critical for antibody binding to αs1‐casein(59–79) and further demonstrate that a highly phosphorylated segment of a protein can be antigenic. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Benzalkonium chloride (BAC), used to extract intracellular ATP, interferes with subsequent firefly luciferase-luciferin assays. There was a significant difference among wild-type luciferases with respect to BAC resistance. Luciola lateralis luciferase (LlL) was the most tolerant, followed by Luciola cruciata luciferase (LcL) and Photinus pyralis luciferase. Random mutagenesis of thermostable mutants of LcL showed that the Glu490Lys mutation contributes to improved resistance to BAC. The corresponding Glu490Lys mutation was introduced into thermostable mutants of LlL by site-directed mutagenesis. Kinetic analysis demonstrated that the resultant LlL-217L490K mutant, having both an Ala217Leu and a Glu490Lys mutation, showed the highest resistance to BAC, with an initial remaining bioluminescence intensity of 87.4% and a decay rate per minute of 29.6% in the presence of 0.1% BAC. The Glu490Lys mutation was responsible for increased resistance to inactivation but not inhibition by BAC. The LlL-217L490K had identical thermostability and pH stability to the parental thermostable mutant. From these results, it was concluded that the LlL-217L490K enzyme is advantageous for hygiene monitoring and biomass assays based on the ATP-bioluminescence methodology. This is the first report demonstrating improved resistance to BAC of the firefly luciferase enzyme.  相似文献   

9.
A mutant strain, KLAM59, of Pseudomonas aeruginosa has been isolated that synthesizes a catalytically inactive amidase. The mutation in the amidase gene has been identified (Glu59Val) by direct sequencing of PCR-amplified mutant gene and confirmed by sequencing the cloned PCR-amplified gene. The wild-type and altered amidase genes were cloned into an expression vector and both enzymes were purified by affinity chromatography on epoxy-activated Sepharose 6B-acetamide followed by gel filtration chromatography. The mutant enzyme was catalytically inactive, and it was detected in column fractions by monoclonal antibodies previously raised against the wild-type enzyme using an ELISA sandwich method. The recombinant wild-type and mutant enzymes were purified with a final recovery of enzyme in the range of 70–80%. The wild-type and mutant enzymes behaved differently on the affinity column as shown by their elution profiles. The molecular weights of the purified wild-type and mutant amidases were found to be 210,000 and 78,000 Dalton, respectively, by gel filtration chromatography. On the other hand, the mutant enzyme ran as a single protein band on SDS-PAGE and native PAGE with a M r of 38,000 and 78,000 Dalton, respectively. These data suggest that the substitution Glu59Val was responsible for the dimeric structure of the mutant enzyme as opposed to the hexameric form of the wild-type enzyme. Therefore, the Glu59 seems to be a critical residue in the maintenance of the native quaternary structure of amidase.  相似文献   

10.
The anti‐plasmodial activity of conformationally restricted analogs of angiotensin II against Plasmodium gallinaceum has been described. To observe activity against another Plasmodium species, invasion of red blood cells by Plasmodium falciparum was analyzed. Analogs restricted with lactam or disulfide bridges were synthesized to determine their effects and constraints in the peptide–parasite interaction. The analogs were synthesized using tert‐butoxycarbonyl and fluoromethoxycarbonyl solid phase methods, purified by liquid chromatography, and characterized by mass spectrometry. Results indicated that the lactam bridge restricted analogs 1 (Glu‐Asp‐Arg‐Orn ‐Val‐Tyr‐Ile‐His‐Pro‐Phe) and 3 (Asp‐Glu‐Arg‐Val‐Orn ‐Tyr‐Ile‐His‐Pro‐Phe) showed activity toward inhibition of ring formation stage of P. falciparum erythrocytic cycle, preventing invasion in about 40% of the erythrocytes. The disulfide‐bridged analog 10 (Cys‐Asp‐Arg‐Cys ‐Val‐Tyr‐Ile‐His‐Pro‐Phe) was less effective yet significant, showing a 25% decrease in infection of new erythrocytes. In all cases, the peptides presented no pressor activity, and hydrophobic interactions between the aromatic and alkyl amino acid side chains were preserved, a factor proven important in efficacy against P. gallinaceum. In contrast, hydrophilic interactions between the Asp1 carboxyl and Arg2 guanidyl groups proved not to be as important as they were in the case of P. gallinaceum, while interactions between the Arg2 guanidyl and Tyr4 hydroxyl groups were not important in either case. The β‐turn conformation was predominant in all of the active peptides, proving importance in anti‐plasmodial activity. This approach provides insight for understanding the importance of each amino acid residue on the native angiotensin II structure and a new direction for the design of potential chemotherapeutic agents. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
We constructed firefly luciferase mutants from Luciola lateralis in which Ala at position 217 was replaced by each of three hydrophobic amino acid residues (lie, Leu, and Val). These mutants were superior to the wild-type in thermostability. Especially, the purified Ala217Leu mutant still maintained over 70% of the initial activity after 60 min at 50°C. This mutant is the most thermostable firefly luciferase obtained.  相似文献   

12.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

13.
The minimal mono-heme ferricytochrome c from Bacillus pasteurii, containing 71 amino acids, has been further investigated through mutagenesis of different positions in the loop containing the iron ligand Met71. These mutations have been designed to sample different aspects of the loop structure, in order to obtain insights into the determinants of the stability of the iron(III) environment. In particular, positions 68, 72 and 75 have been essayed. Gln68 has been mutated to Lys to provide a suitable alternate ligand that can displace Met71 under denaturing conditions. Pro72 has been mutated to Gly and Ala to modify the range of allowed backbone conformations. Ile75, which is in van der Waals contact with Met71 and partly shields a long-lived water molecule in a protein cavity, has been substituted by Val and Ala to affect the network of inter-residue interactions around the metal site. The different contributions of the above amino acids to protein parameters such as structure, redox potential and the overall stability against unfolding with guanidinium hydrochloride are analyzed. While the structure remains essentially the same, the stability decreases with mutations. The comparison with mitochondrial c-type cytochromes is instructive.Abbreviations Bpcytc soluble fragment of cytochrome c553 from Bacillus pasteurii - GdmCl guanidinium chloride - I75A Ile75 to Ala mutant - I75V Ile75 to Val mutant - P72A Pro72 to Ala mutant - P72G Pro72 to Gly mutant - Q68K Gln75 to Lys mutant - WT wild type  相似文献   

14.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

15.

Lung cancer is a lethal malignancy and is affected by genetic polymorphisms that contribute to an individual’s susceptibility to developing the disease. Several studies on lung cancer showed conflicting results. The aim of this study is to investigate whether individual or combined modifying effects of LOX G/A, GSTM1 active/null, GSTT1 active/null and GSTP1 Ile/Val polymorphisms are related to the risk of lung cancer in relation to smoking in the Egyptian population. This study is a hospital-based case control study that included 200 patients and 200 control subjects. Genotyping of the 4 studied genes was determined by Multiplex PCR for GSTM1 and GSTT1 and Taq man SNP assay for GSTP1 and LOX genes. The LOX G/A and GSTP1 Ile/Val in both homozygous and heterozygous variants, and the GSTM1 and GSTT1 null genotype showed significant association with lung cancer. Combination between gene polymorphism and smoking increased the risk of developing cancer by 2.7 fold in the LOX GA+AA variant, 1.9 fold in the GSTM1 null variant, 4.8 fold in the GSTT1 null variant and 4.3 fold in the GSTP1 Ile/Val+Val/Val variant. The genetic combination (LOX GA+AA/GSTT1 active, LOX GG/GSTT1 null, LOX GA+AA/GSTT1 null, LOX GA+AA/GSTP1 Ile/Ile, LOX GG/GSTP1 Ile/Val+Val/Val and LOX GA+AA/GSTP1 Ile/Val+Val/Val) led to a higher lung cancer risk, compared to the reference group. The LOX GA/AA, GSTM1 null, GSTT1 null and GSTP1 Ile/Val, Val/Val genotypes contributed to increased lung cancer susceptibility. To the best of our knowledge, this is the first study of LOX genotyping in the Egyptian population. The combination of genotypes increased the risk of cancer, indicating the importance of gene–gene interaction and giving a targeted preventive approach.

  相似文献   

16.
Light emission from the North American firefly Photinus pyralis, which emits yellow-green (557-nm) light, is widely believed to be the most efficient bioluminescence system known, making this luciferase an excellent tool for monitoring gene expression. We present studies on the production of a set of thermostable red- and green-emitting luciferase mutants with bioluminescent properties suitable for dual-color reporter assays, biosensor measurements with internal controls, and imaging techniques. Starting with the luciferase variant Ser284Thr, we introduced the mutations Thr214Ala, Ala215Leu, Ile232Ala, Phe295Leu, and Glu354Lys to produce a new red-emitting enzyme with a bioluminescence maximum of 610 nm, narrow emission bandwidth, favorable kinetic properties, and excellent thermostability at 37 degrees C. By adding the same five changes to luciferase mutant Val241Ile/Gly246Ala/Phe250Ser, we produced a protein with an emission maximum of 546 nm, providing a set of thermostable enzymes whose bioluminescence maxima were separated by 64 nm. Model studies established that the luciferases could be detected at the attomole level and six orders of magnitude higher. In microplate luminometer format, mixtures containing 1.0 fmol total luciferase were quantified from measurements of simultaneously emitted red and green light. The results presented here provide evidence that it is feasible to monitor two distinct activities at 37 degrees C with these novel thermostable proteins.  相似文献   

17.
BARD1–BRCA1 complex plays an important role in DNA damage repair, apoptosis, chromatin remodeling, and other important processes required for cell survival. BRCA1 and BARD1 heterodimer possess E3 ligase activity and is involved in genome maintenance, by functioning in surveillance for DNA damage, thereby regulating multiple pathways including tumor suppression. BRCT domains are evolutionary conserved domains present in different proteins such as BRCA1, BARD1, XRCC, and MDC1 regulating damage response and cell-cycle control through protein–protein interactions. Nonetheless, the role of BARD1BRCT in the recruitment of DNA repair mechanism and structural integrity with BRCA1 complex is still implicit. To explicate the role of BARD1BRCT in the DNA repair mechanism, in silico, in vitro, and biophysical approach were applied to characterize BARD1 BRCT wild-type and Arg658Cys and Ile738Val mutants. However, no drastic secondary and tertiary structural changes in the mutant proteins were observed. Thermal and chemical denaturation studies revealed that mutants Arg658Cys and Ile738Val have a decrease in Tm and ?G than the wild type. In silico studies of BARD1 BRCT (568-777) and mutant protein indicate loss in structural compactness on the Ile738Val mutant. Comparative studies of wild-type and mutants will thus be helpful in understanding the basic role of BARD1BRCT in DNA damage repair.  相似文献   

18.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

19.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

20.
Metal binding of superoxide dismutase from Thermus thermophilus HB27 was analyzed by comparing the related structures and sequences from different origins. Mutants (Ile166Leu, Asp167Glu, and Ile166Leu-Asp167Glu) were prepared and characterized. The mutants Asp167Glu and Ile166Leu-Asp167Glu changed their binding specificities from manganese to iron, which were manifested by the differences in color of the enzyme solutions and by flame atomic absorption analysis. Specific activities of the three mutants were 112, 52, and 62% of that of the wild-type enzyme, respectively. Asp167Glu and Ile166Leu-Asp167Glu only retained 6.8 and 6.1%, respectively, of the original activities after dialysis against 1 mM EDTA. Tryptophan fluorescence measurement and native gel electrophoresis implied that the three mutants could fold into a less condensed structure. Their folding and changes in the ion binding sites of the modeled structures might be the reason for their low affinities to metal ions. These findings increased our understanding of metal binding specificity of superoxide dismutase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号