首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cell lines were established from two uterine cervical cancers, a glassy cell carcinoma (GCC) and a large cell nonkeratinizing squamous cell carcinoma (LCSC), and studied by a variety of techniques, including histology, chromosome analysis, heterotransplantation and tumor marker analyses. There were radical differences in the morphology, heterotransplantability, production of tumor markers, etc., between the cultures of these morphologically similar cancers. The LCSC line (HKMUS) consisted of polygonal and round cells containing tonofilaments; these cells discharged tumor antigen-4 (TA-4) into the conditioned media. HKMUS was heterotransplantable into the subcutis of nude mice to form LCSC. On the other hand, the GCC line (HOKUG) consisted of round or spindle-shaped cells. HOKUG was easily transplanted into the subcutis or intraabdominal cavity of nude mice and metastasized easily. It discharged TA-4, carbohydrate antigen 125 (CA125) and neuron-specific enolase (NSE) into the conditioned media. The histologic picture of GCC revealed numerous blood vessels and a rapid proliferation of the cells. GCC, which is considered to be a mixed carcinoma having the characteristics of both squamous carcinoma and adenocarcinoma, seems to be a cancer of unpredictable prognosis as compared to LCSC, possibly due to its rapid proliferation and easy metastasis, leading to peritonitis carcinomatosa.  相似文献   

2.
3.
This review will first recall the phenomena of “cortical inheritance” observed and genetically demonstrated in Paramecium 40 years ago, and later in other ciliates (Tetrahymena, Oxytricha, Paraurostyla), and will analyze the deduced concept of “cytotaxis” or “structural memory.” The significance of these phenomena, all related (but not strictly restricted) to the properties of ciliary basal bodies and their mode of duplication, will be interpreted in the light of present knowledge on the mechanism and control of basal body/centriole duplication. Then other phenomena described in a variety of organisms will be analyzed or mentioned which show the relevance of the concept of cytotaxis to other cellular processes, mainly (1) cytoskeleton assembly and organization with examples on ciliates, trypanosome, mammalian cells and plants, and (2) transmission of polarities with examples on yeast, trypanosome and metazoa. Finally, I will discuss some aspects of this particular type of non-DNA inheritance: (1) why so few documented examples if structural memory is a basic parameter in cell heredity, and (2) how are these phenomena (which all rely on protein/protein interactions, and imply a formatting role of preexisting proteinic complexes on neo-formed proteins and their assembly) related to prions?Key words: Paramecium, basal-body, centriole, basal-body duplication, cell polarity, structural inheritance, cytotaxis, cell memory, epigenetics  相似文献   

4.
The direct interaction of the antibiotic primycin with the plasma membrane was investigated by employing the well-characterized ergosterol-producing, amphotericin B-sensitive parental Candida albicans strain 33erg(+) and its ergosterol-less amphotericin B-resistant plasma membrane mutant erg-2. The growth inhibition concentration in shaken liquid medium was 64 μgml(-1) for 33erg(+) and 128 μgml(-1) for erg-2, suggesting that the plasma membrane composition influences the mode of action of primycin. To determine the primycin-induced changes in the plasma membrane dynamic, electron paramagnetic resonance (EPR) spectroscopy methods were used, the spin-labeled fatty acid 5-(4,4-dimethyloxazolidine-N-oxyl)stearic acid) being applied for the in vivo measurements. The phase transition temperatures of untreated strain 33erg(+) and its mutant erg-2 were 12.5°C and 11°C, respectively. After 128 μgml(-1) primycin treatment, these values increased to 17.5°C and 16°C, revealing a significant reduction in the phospholipid flexibility. Saturation transfer EPR measurements demonstrated that, the rotational correlation times of the spin label molecule for the control samples of 33erg(+) and erg-2 were 60 ns and 100 ns. These correlation times gradually decreased on the addition of increasing primycin concentrations, reaching 8 μs and 1 μs. The results indicate the plasma membrane "rigidizing" effect of primycin, a feature that may stem from its ability to undergo complex formation with membrane constituent fatty acid molecules, causing alterations in the structures of phospholipids in the hydrophobic surface near the fatty acid chain region.  相似文献   

5.
BACKGROUND: Hybrids obtained by fusion between tumour cells (TC) and dendritic cells (DC) have been proposed as anti-tumour vaccines because of their potential to combine the expression of tumour-associated antigens with efficient antigen presentation. The classical methods used for fusion, polyethylene glycol (PEG) and electrofusion, are cytotoxic and generate cell debris that can be taken up by DC rendering the identification of true hybrids difficult. METHODS: We have established a stable cell line expressing a viral fusogenic membrane glycoprotein (FMG) that is not itself susceptible to fusion. This cell line has been used to generate hybrids and to evaluate the relevance of tools used for hybrid detection. RESULTS: This FMG-expressing cell line promotes fusion between autologous or allogeneic TC and DC in any combination, generating 'tri-parental hybrids'. At least 20% of TC are found to be integrated into hybrids. CONCLUSIONS: It is speculated that this tri-parental hybrid approach offers new possibilities to further modulate the anti-tumour effect of the DC/TC hybrids since it allows the expression of relevant immunostimulatory molecules by appropriate engineering of the fusogenic cell line.  相似文献   

6.
7.
8.
Recently, ascorbate (ASC) concentration and the activity of a number of enzymes from the ASC metabolism have been proven to correlate with differences in growth or cell cycle progression. Here, a possible correlation between growth and the activity of a plasma membrane dehydroascorbate (DHA) transporter was investigated. Protoplasts were isolated from a tobacco (Nicotiana tabacum) Bright Yellow-2 cell culture at different intervals after inoculation and the activity of DHA transport was tested with (14)C-labeled ASC. Ferricyanide (1 mM) or dithiothreitol (1 mM) was included in the test to keep the external (14)C-ASC in its oxidized respectively reduced form. Differential uptake activity was observed, correlating with growth phases of the cell culture. Uptake of DHA in cells showed a peak in exponential growth phase, whereas uptake in the presence of dithiothreitol did not. The enhanced DHA uptake was not due to higher endogenous ASC levels that are normally present in exponential phase because preloading of protoplasts of different ages did not affect DHA uptake. Preloading was achieved by incubating cells before protoplastation for 4 h in a medium supplemented with 1 mM DHA. In addition to testing cells at different growth phases, uptake of DHA into the cells was also followed during the cell cycle. An increase in uptake activity was observed during M phase and the M/G1 transition. These experiments are the first to show that DHA transport activity into plant cells differs with cell growth. The relevance of the data to the action of DHA and ASC in cell growth will be discussed.  相似文献   

9.
The effects of lactoferrin (Lf), an iron-binding glycoprotein, on cell migration were investigated. Lf inhibited the cell migration of three gastrointestinal cell lines (Caco-2 cells, AGS cells, and IEC-18 cells) in vitro. Both iron-saturated (holo) and iron-depleted (apo) Lf showed this inhibitory effect. Chelation of iron in the culture medium by desferrioxamine did not affect the activity of either form of Lf. A pepsin hydrolysate of Lf exhibited effectiveness similar to that of intact Lf. These results demonstrate a novel activity of Lf and suggest a potential role for this molecule in gastrointestinal wound healing, which is independent of its iron-binding capacity. J. Cell. Physiol. 170:101–105, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The orphan nuclear receptor COUP-TFI (Nr2f1) regulates many aspects of mammalian development, but little is known about its role in cochlear hair cell and Deiter's support cell development. The COUP-TFI knockout (COUP-TFI(-/-)) has a significant increase in hair cell (HC) number in the mid-to-apical turns. The total number of hair cells is not increased over wild type, perhaps because of displaced hair cells and a shortened cochlear duct. This implicates a defect of convergent-extension in the COUP-TFI(-/-) duct. In addition, excess proliferation in the COUP-TFI(-/-) sensory epithelium indicates that the origin of the extra HCs in the apex is complex. Because loss-of-function studies of Notch signaling components have similar phenotypes, we investigated Notch regulation of hair cell differentiation in COUP-TFI(-/-) mice and confirmed misregulation of Notch signaling components, including Jag1, Hes5 and in a manner consistent with reduced Notch signaling, and correlated with increases in hair cell and support cell differentiation. The disruption of Notch signaling by a gamma-secretase inhibitor in an in vitro organ culture system of wild-type cochleae resulted in a reduction in expression of the Notch target gene Hes5 and an increase in hair cell differentiation. Importantly, inhibition of Notch activity resulted in a greater increase in hair cell differentiation in COUP-TFI(-/-) cochlear cultures than in wild-type cultures, suggesting a hypersensitivity to Notch inactivation in COUP-TFI(-/-) cochlea, particularly at the apical turn. Thus, we present evidence that reduced Notch signaling contributes to increases in hair cell and support cell differentiation in COUP-TFI(-/-) mice, and suggest that COUP-TFI is required for Notch regulation of hair cell and support cell differentiation.  相似文献   

11.
A bimolecular mechanism for the cell size control of the cell cycle   总被引:2,自引:0,他引:2  
A molecular model for the control of cell size has been developed. It is based on two molecules, one (I) acts as an inhibitor of the entrance into S phase, and it is synthetised just after cell separation in a fixed amount per nucleus. The other (A) is an activator of the S phase, and it is synthetised at a ratio proportional to the overall protein accumulation. The activator reacts stoichiometrically with (I), and after all the (I) molecules have been titrated, (A) begins to accumulate. When it reaches a threshold value, it triggers the onset of DNA replication. This model was tested by simulation and when applied to the case of unequal division explains a number of features of an exponentially growing yeast cell population: (a) the lengths of TP (cycle time of parent cells) and TD (cycle time of daughter cells) verify the condition exp(- KTP ) + exp(- KTD ) = 1; (b) the changes of the average cell size of populations at different growth rates; (c) the frequency of parents and daughters at various growth rates; (d) the increase of cell size at bud initiation for cells of increasing genealogical age; (e) the existence of a TP - TB period (difference between the cycle time of parents and the length of budded phase) that depends linearly upon the doubling time of the population.  相似文献   

12.
Renal cell carcinoma (RCC) is one of the leading causes of cancer-related death worldwide. Tumour metastasis and heterogeneity lead to poor survival outcomes and drug resistance in patients with metastatic RCC (mRCC). In this study, we aimed to assess intratumoural heterogeneity (ITH) in mRCC cells by performing a combined analysis of bulk data and single-cell RNA-sequencing data, and develop novel biomarkers for prognosis prediction on the basis of the potential molecular mechanisms underlying tumorigenesis. Eligible single-cell cohorts related to mRCC were acquired using the Gene Expression Omnibus (GEO) dataset to identify potential mRCC subpopulations. We then performed gene set variation analysis to understand the differential function in primary RCC and mRCC samples. Subsequently, we applied weighted correlation network analysis to identify coexpressing gene modules that were related to the external trait of metastasis. Protein-protein interactions were used to screen hub subpopulation-difference (sub-dif) markers (ACTG1, IL6, CASP3, ACTB and RAP1B) that might be involved in the regulation of RCC metastasis and progression. Cox regression analysis revealed that ACTG1 was a protective factor (HR < 1), whereas the other four genes (IL6, CASP3, ACTB and RAP1B) were risk factors (HR > 1). Kaplan-Meier survival analysis suggested the potential prognostic value of these sub-dif markers. The expression of sub-dif markers in mRCC was further evaluated in clinical samples by immunohistochemistry (IHC). Additionally, the genetic features of sub-dif marker expression patterns, such as genetic variation profiles, correlations with tumour-infiltrating lymphocytes (TILs), and targeted signalling pathway activities, were assessed in bulk RNA-seq datasets. In conclusion, we established novel subpopulation markers as key prognostic factors affecting EMT-related signalling pathway activation in mRCC, which could facilitate the implementation of a treatment for mRCC patients.  相似文献   

13.
Generation of induced pluripotent stem cells (iPSCs) with naive pluripotency is important for their applications in regenerative medicine. In female iPSCs, acquisition of naive pluripotency is coupled to X chromosome reactivation (XCR) during somatic cell reprogramming, and live cell monitoring of XCR is potentially useful for analyzing how iPSCs acquire naive pluripotency. Here we generated female mouse embryonic stem cells (ESCs) that carry the enhanced green fluorescent protein (EGFP) and humanized Kusabira-Orange (hKO) genes inserted into an intergenic site near either the Syap1 or Taf1 gene on both X chromosomes. The ESC clones, which initially expressed both EGFP and hKO, inactivated one of the fluorescent protein genes upon differentiation, indicating that the EGFP and hKO genes are subject to X chromosome inactivation (XCI). When the derived somatic cells carrying the EGFP gene on the inactive X chromosome (Xi) were reprogrammed into iPSCs, the EGFP gene on the Xi was reactivated when pluripotency marker genes were induced. Thus, the fluorescent protein genes inserted into an intergenic locus on both X chromosomes enable live cell monitoring of XCI during ESC differentiation and XCR during reprogramming. This is the first study that succeeded live cell imaging of XCR during reprogramming.  相似文献   

14.
Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: 1) cell volume; 2) cell cycle position; and 3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings 1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and 2) demonstrate EC subpopulations in culture.  相似文献   

15.
A single step ion-exchange chromatography on a sulfo-propyl (SP)- Sepharose column was performed to separate both the high molecular weight (HMW)- and low molecular weight (LMW)- forms of enzymatically active urokinase type plasminogen activator from human kidney (HT1080) cell culture media. The level of urokinase secreted by the cell line reached to about 145 Plough units/ml culture broth within 48 h of cultivation. The conditioned cell culture media was applied directly to the column without any prior concentration steps. Polyacrylamide gel electrophoresis of the column eluates in the presence of sodium dodecyl sulphate showed that the cell line secretes three forms of two-chain high molecular weight (HMW) urokinase of molecular weights (M(r)) 64,000, 60,900 and 55,000. In addition, two low molecular weight (LMW) forms of M(r) 22,000 and 20,000; proteolytic cleavage products of HMW, were also found. The HMW and LMW forms had intrinsic plasminogen dependent proteolytic activity as judged by zymographic analysis. The specific activity of the pooled peak fractions increased (approximately 93-fold) to values as high as 1481 Plough units/ mg protein. Both HMW as well as LMW forms were obtained in significantly high yields.  相似文献   

16.
ABSTRACT: BACKGROUND: Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound's action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. METHODS: Human cell lines were treated with lycopene (1-5 uM) for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL) and by DAPI. RESULTS: Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7) after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145) when cells were treated with lycopene. CONCLUSIONS: Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent. KEY WORDS: lycopene, cancer, bioactive compounds, cell cycle.  相似文献   

17.
We established many immunoglobulin-null immature B cell lines transformed by tsOS-59, a temperature-sensitive mutant of Abelson murine leukemia virus. In different cell lines cell growth was depressed and cell differentiation (generation of intracytoplasmic mu-positive cells from Ig- cells) was induced by the shift of culture temperature from low (35 degrees C) to high (39 degrees C). Cell lines were categorized into four groups: (i) temperature sensitive (ts) to both cell growth and differentiation, (ii) ts to cell growth but not to cell differentiation, (iii) ts to cell differentiation but not to cell growth, and (iv) ts to neither cell growth nor differentiation. These results indicated that the depression of cell growth did not necessarily induce cell differentiation, and that cell differentiation was induced regardless of whether cell growth was depressed or not. Furthermore, the results showed that the depression of cell growth and the induction of cell differentiation occurred without the reduction of tyrosine kinase activity of P120gag-abl at high, nonpermissive temperature. Our cell growth and differentiation system described here should provide us with the interesting findings of the relation between B cell growth and differentiation.  相似文献   

18.
Janz S 《DNA Repair》2006,5(9-10):1213-1224
Chromosomal translocations that join the cellular oncogene Myc (c-myc) with immunoglobulin (Ig) heavy-chain (Igh) or light-chain (Igk, Igl) loci are widely believed to be the crucial initiating oncogenic events in the development of B cell and plasma cell neoplasms in three mammalian species: Burkitt lymphoma (BL) in human beings, plasmacytoma (PCT) in mice, and immunocytoma in rats. Among the Myc-Ig translocations found in these neoplasms, mouse PCT T(12;15)(Igh-Myc) is of special interest because it affords a uniquely useful model system to study the fundamental outstanding questions on the mechanisms, genetics, and biological consequences of Myc translocations. Mouse T(12;15) is the direct counterpart of the human BL t(8;14)(q24;q32) translocation and thus of great relevance for human cancer. Mouse T(12;15) is the only cancer-associated translocation in mice that occurs with high incidence, spontaneity, and cell-type specificity. Due to the development of PCR methods for the detection of the underlying reciprocal Myc-Igh junction fragments, it is now known that mouse T(12;15) can be a dynamic process that begins with the genetic exchange of Myc and the Igh switch mu region (Smu), progresses by class switch recombination (CSR) just 3' of the translocation break site, and then undergoes further clonal diversification by micro-deletions in the junction flanks. The molecular pathway that subverts CSR to mediate trans-chromosomal joining of Myc and Smu (translocation origin) and secondary modification of Myc-Igh junctions (translocation "remodeling") has not been elucidated, but recent evidence indicates that it includes CSR factors, such as the activation-induced cytidine deaminase (AID), that may also be involved in the ongoing neoplastic progression of the translocation-bearing tumor precursor. Transgenic mouse models of T(12;15)/t(8;14), including newly developed "iMyc" gene-insertion mice, will be useful in elucidating the role of these CSR factors in the progression of Myc-induced B cell tumors.  相似文献   

19.
Cell division must be tightly coupled to cell growth in order to maintain cell size, yet the mechanisms linking these two processes are unclear. It is known that almost all proteins involved in cell division shuttle between cytoplasm and nucleus during the cell cycle; however, the implications of this process for cell cycle dynamics and its coupling to cell growth remains to be elucidated. We developed mathematical models of the cell cycle which incorporate protein translocation between cytoplasm and nucleus. We show that protein translocation between cytoplasm and nucleus not only modulates temporal cell cycle dynamics, but also provides a natural mechanism coupling cell division to cell growth. This coupling is mediated by the effect of cytoplasmic-to-nuclear size ratio on the activation threshold of critical cell cycle proteins, leading to the size-sensing checkpoint (sizer) and the size-independent clock (timer) observed in many cell cycle experiments.  相似文献   

20.
Levels of intracellular calcium, (Ca(2+))(i), from different stages of cell cycle of Dictyostelium discoideum were monitored using the fluorescent Ca(2+)-sensitive dye, Indo 1. Combinations of Ca(2+)-ionophore (A23187) and Ca(2+)-chelator (EGTA) resulted in the inhibition of progression of cell cycle. This delay was caused due to block in G(2)/M-->S phase transition of the cell cycle. Rescue of the cell cycle progression was made with 0.5 m m of exogenous Ca(2+). High (Ca(2+))(i)levels overlapped with the S-phase, of the cell cycle.Results indicate that a high (Ca(2+))(i)level during S-phase is not required for cell cycle progression but for cell-type choice mechanism at the onset of starvation, and these cells tend to follow the prestalk pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号