首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
隐马尔科夫过程在生物信息学中的应用   总被引:3,自引:0,他引:3  
隐马尔科夫过程(hidden markov model,简称HMM)是20世纪70年代提出来的一种统计方法,以前主要用于语音识别。1989年Churchill将其引入计算生物学。目前,HMM是生物信息学中应用比较广泛的一种统计方法,主要用于:线性序列分析、模型分析、基因发现等方面。对HMM进行了简明扼要的描述,并对其在上述几个方面的应用作一概略介绍。  相似文献   

2.
3.
4.

Background  

Nuclear localization signals (NLSs) are stretches of residues within a protein that are important for the regulated nuclear import of the protein. Of the many import pathways that exist in yeast, the best characterized is termed the 'classical' NLS pathway. The classical NLS contains specific patterns of basic residues and computational methods have been designed to predict the location of these motifs on proteins. The consensus sequences, or patterns, for the other import pathways are less well-understood.  相似文献   

5.
In hidden Markov models, the probability of observing a set of strings can be computed using recursion relations. We construct a sufficient condition for simplifying the recursion relations for a certain class of hidden Markov models. If the condition is satisfied, then one can construct a reduced recursion where the dependence on Markov states completely disappears. We discuss a specific example—namely, statistical multiple alignment based on the TKF-model—in which the sufficient condition is satisfied.  相似文献   

6.
Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies.  相似文献   

7.
MOTIVATION: We review proposed syntheses of probabilistic sequence alignment, profiling and phylogeny. We develop a multiple alignment algorithm for Bayesian inference in the links model proposed by Thorne et al. (1991, J. Mol. Evol., 33, 114-124). The algorithm, described in detail in Section 3, samples from and/or maximizes the posterior distribution over multiple alignments for any number of DNA or protein sequences, conditioned on a phylogenetic tree. The individual sampling and maximization steps of the algorithm require no more computational resources than pairwise alignment. METHODS: We present a software implementation (Handel) of our algorithm and report test results on (i) simulated data sets and (ii) the structurally informed protein alignments of BAliBASE (Thompson et al., 1999, Nucleic Acids Res., 27, 2682-2690). RESULTS: We find that the mean sum-of-pairs score (a measure of residue-pair correspondence) for the BAliBASE alignments is only 13% lower for Handelthan for CLUSTALW(Thompson et al., 1994, Nucleic Acids Res., 22, 4673-4680), despite the relative simplicity of the links model (CLUSTALW uses affine gap scores and increased penalties for indels in hydrophobic regions). With reference to these benchmarks, we discuss potential improvements to the links model and implications for Bayesian multiple alignment and phylogenetic profiling. AVAILABILITY: The source code to Handelis freely distributed on the Internet at http://www.biowiki.org/Handel under the terms of the GNU Public License (GPL, 2000, http://www.fsf.org./copyleft/gpl.html).  相似文献   

8.
9.
10.
Longitudinal data usually consist of a number of short time series. A group of subjects or groups of subjects are followed over time and observations are often taken at unequally spaced time points, and may be at different times for different subjects. When the errors and random effects are Gaussian, the likelihood of these unbalanced linear mixed models can be directly calculated, and nonlinear optimization used to obtain maximum likelihood estimates of the fixed regression coefficients and parameters in the variance components. For binary longitudinal data, a two state, non-homogeneous continuous time Markov process approach is used to model serial correlation within subjects. Formulating the model as a continuous time Markov process allows the observations to be equally or unequally spaced. Fixed and time varying covariates can be included in the model, and the continuous time model allows the estimation of the odds ratio for an exposure variable based on the steady state distribution. Exact likelihoods can be calculated. The initial probability distribution on the first observation on each subject is estimated using logistic regression that can involve covariates, and this estimation is embedded in the overall estimation. These models are applied to an intervention study designed to reduce children's sun exposure.  相似文献   

11.
12.
The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of ; the visualization itself can be done with a complexity of and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with ms. The current 64-bit implementation theoretically supports datasets with up to bytes, on the x86_64 architecture currently up to bytes are supported, and benchmarks have been conducted with bytes/1 TiB or double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments.  相似文献   

13.
The simplicity and flexibility of Markov models make them appealing for investigations of the acquisition of HIV drug-resistance mutations, whose presence can define specific Markov states. Because the exact time of acquiring a mutation is not observed during clinical research studies on HIV infection, it is important that methods for fitting such models accommodate interval-censored transition times. Furthermore, many such studies include patients with extensive treatment experience prior to the onset of the studies. Therefore, the virus in these patients may have already acquired resistance mutations by study entry. Retrospective data regarding the time on treatment, which is often known or known with error, provide information about the acquisition rates before the start of a study. Finally, variability in the genetic sequences of circulating HIV creates uncertainty in the Markov states. This paper considers approaches to fitting Markov models to data with interval-censored transition times when the time origin and the Markov states are known with error. The methods were applied to AIDS Clinical Trial Group protocol 398, a randomized comparison of mono- versus dual-protease inhibitor use in heavily pretreated patients. We found that the estimated rates of acquiring certain classes of mutations depended on the presence of others, and that the precision of these estimates can be considerably improved by inclusion of retrospective data.  相似文献   

14.

Background  

Hidden Markov Models (HMMs) have been extensively used in computational molecular biology, for modelling protein and nucleic acid sequences. In many applications, such as transmembrane protein topology prediction, the incorporation of limited amount of information regarding the topology, arising from biochemical experiments, has been proved a very useful strategy that increased remarkably the performance of even the top-scoring methods. However, no clear and formal explanation of the algorithms that retains the probabilistic interpretation of the models has been presented so far in the literature.  相似文献   

15.
Detecting and localizing selective sweeps on the basis of SNP data has recently received considerable attention. Here we introduce the use of hidden Markov models (HMMs) for the detection of selective sweeps in DNA sequences. Like previously published methods, our HMMs use the site frequency spectrum, and the spatial pattern of diversity along the sequence, to identify selection. In contrast to earlier approaches, our HMMs explicitly model the correlation structure between linked sites. The detection power of our methods, and their accuracy for estimating the selected site location, is similar to that of competing methods for constant size populations. In the case of population bottlenecks, however, our methods frequently showed fewer false positives.  相似文献   

16.
Hidden Markov models (HMM) are introduced for the offline classification of single-trail EEG data in a brain-computer-interface (BCI). The HMMs are used to classify Hjorth parameters calculated from bipolar EEG data, recorded during the imagination of a left or right hand movement. The effects of different types of HMMs on the recognition rate are discussed. Furthermore a comparison of the results achieved with the linear discriminant (LD) and the HMM, is presented.  相似文献   

17.
J Hargbo  A Elofsson 《Proteins》1999,36(1):68-76
There are many proteins that share the same fold but have no clear sequence similarity. To predict the structure of these proteins, so called "protein fold recognition methods" have been developed. During the last few years, improvements of protein fold recognition methods have been achieved through the use of predicted secondary structures (Rice and Eisenberg, J Mol Biol 1997;267:1026-1038), as well as by using multiple sequence alignments in the form of hidden Markov models (HMM) (Karplus et al., Proteins Suppl 1997;1:134-139). To test the performance of different fold recognition methods, we have developed a rigorous benchmark where representatives for all proteins of known structure are matched against each other. Using this benchmark, we have compared the performance of automatically-created hidden Markov models with standard-sequence-search methods. Further, we combine the use of predicted secondary structures and multiple sequence alignments into a combined method that performs better than methods that do not use this combination of information. Using only single sequences, the correct fold of a protein was detected for 10% of the test cases in our benchmark. Including multiple sequence information increased this number to 16%, and when predicted secondary structure information was included as well, the fold was correctly identified in 20% of the cases. Moreover, if the correct secondary structure was used, 27% of the proteins could be correctly matched to a fold. For comparison, blast2, fasta, and ssearch identifies the fold correctly in 13-17% of the cases. Thus, standard pairwise sequence search methods perform almost as well as hidden Markov models in our benchmark. This is probably because the automatically-created multiple sequence alignments used in this study do not contain enough diversity and because the current generation of hidden Markov models do not perform very well when built from a few sequences.  相似文献   

18.
Summary Array CGH is a high‐throughput technique designed to detect genomic alterations linked to the development and progression of cancer. The technique yields fluorescence ratios that characterize DNA copy number change in tumor versus healthy cells. Classification of tumors based on aCGH profiles is of scientific interest but the analysis of these data is complicated by the large number of highly correlated measures. In this article, we develop a supervised Bayesian latent class approach for classification that relies on a hidden Markov model to account for the dependence in the intensity ratios. Supervision means that classification is guided by a clinical endpoint. Posterior inferences are made about class‐specific copy number gains and losses. We demonstrate our technique on a study of brain tumors, for which our approach is capable of identifying subsets of tumors with different genomic profiles, and differentiates classes by survival much better than unsupervised methods.  相似文献   

19.
Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.  相似文献   

20.
In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the model through several computer simulations. The full power of hidden Markov model learning can be attained through reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate learning method for an artificial grammar task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号