首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic plasticity of the two salt marsh grasses Spartina alterniflora and Phragmites australis in salt marshes is crucial to their invasive ability, but the importance of phenotypic plasticity, nitrogen levels, and intraspecific competition to the success of the two species is unclear at present. Spartina alterniflora Loisel. is an extensively invasive species that has increased dramatically in distribution and abundance on the Chinese and European coasts, and has had considerable ecological impacts in the regions where it has established. Meanwhile, Phragmites australis Cav., a native salt marsh species on the east coast of China, has replaced the native S. alterniflora in many marshes along the Atlantic Coast of the US. This study determined the effects of nitrogen availability and culm density on the morphology, growth, and biomass allocation traits of Spartina alterniflora and Phragmites australis. A large number of morphological, growth, and biomass parameters were measured, and various derived values (culm: root ratio, specific leaf area, etc.) were calculated, along with an index of phenotypic plasticity. Nitrogen addition significantly affected growth performance and biomass allocation traits of Spartina alterniflora, and culm density significantly affected morphological characteristics in a negative way, especially for Spartina alterniflora. However, there were no significant interactions between nitrogen levels and culm density on the morphological parameters, growth performances parameters, and biomass allocation parameters of the two species. Spartina alterniflora appears to respond more strongly to nitrogen than to culm density and this pattern of phenotypic plasticity appears to offer an expedition for successful invasion and displacement of Phramites australias in China. The implication of this study is that, in response to the environmental changes that are increasing nitrogen levels, the range of Spartina alterniflora is expected to continue to expand on the east coast of China.  相似文献   

2.
The Yangtze River estuary is an important ecoregion. However, Spartina alterniflora, native to North America, was introduced to the estuary in the 1990s through both natural dispersal and humans and now it is a dominant species in the estuarine ecosystems, with its invasions leading to multiple consequences to the estuary. S. alterniflora had great competitive effects on native species, including Scirpus mariqueter and Phragmites australis, and could potentially exclude the natives locally. The presence of S. alterniflora had little influence on the total density of soil nematodes and macrobenthonic invertebrates, but significantly altered the structure of trophic functional groups of nematode and macrobenthonic invertebrate communities. The conversion of mudflats to Spartina meadows had significant effects on birds of Charadriidae and Scolopacidae, which might be attributable to the reduction of food resources and the physical alterations of habitats for shorebirds. S. alterniflora invasions increased the primary productivity of the invaded ecosystems, and altered carbon and nitrogen cycling processes. Our studies focused mainly on the effects of S. alterniflora invasions on the structure of native ecosystems; thus further studies are clearly needed to investigate how ecosystem functioning is affected by the modification of the structure of estuarine ecosystems by S. alterniflora invasions.  相似文献   

3.
The increasing success of invasive plant species in wetland areas can threaten their capacity to store carbon, nitrogen, and phosphorus (C, N, and P). Here, we have investigated the relationships between the different stocks of soil organic carbon (SOC), and total C, N, and P pools in the plant–soil system from eight different wetland areas across the South‐East coast of China, where the invasive tallgrass Spartina alterniflora has replaced the native tall grasses Phragmites australis and the mangrove communities, originally dominated by the native species Kandelia obovata and Avicennia marina. The invasive success of Spartina alterniflora replacing Phragmites australis did not greatly influence soil traits, biomass accumulation or plant–soil C and N storing capacity. However, the resulting higher ability to store P in both soil and standing plant biomass (approximately more than 70 and 15 kg P by ha, respectively) in the invasive than in the native tall grass communities suggesting the possibility of a decrease in the ecosystem N:P ratio with future consequences to below‐ and aboveground trophic chains. The results also showed that a future advance in the native mangrove replacement by Spartina alterniflora could constitute a serious environmental problem. This includes enrichment of sand in the soil, with the consequent loss of nutrient retention capacity, as well as a sharp decrease in the stocks of C (2.6 and 2.2 t C ha‐1 in soil and stand biomass, respectively), N, and P in the plant–soil system. This should be associated with a worsening of the water quality by aggravating potential eutrophication processes. Moreover, the loss of carbon and nutrient decreases the potential overall fertility of the system, strongly hampering the reestablishment of woody mangrove communities in the future.  相似文献   

4.
Climate models predict that, in the coming decades, many arid regions will experience increasingly hot conditions and will be affected more frequently by drought. These regions are also experiencing rapid vegetation change, notably invasion by exotic grasses. Invasive grasses spread rapidly into native desert ecosystems due, in particular, to interannual variability in precipitation and periodic fires. The resultant destruction of non-fire-adapted native shrub and grass communities and of the inherent soil resource heterogeneity can yield invader-dominated grasslands. Moreover, recurrent droughts are expected to cause widespread physiological stress and mortality of both invasive and native plants, as well as the loss of soil resources. However, the magnitude of these effects may differ between invasive and native grasses, especially under warmer conditions, rendering the trajectory of vegetated communities uncertain. Using the Biosphere 2 facility in the Sonoran Desert, we evaluated the viability of these hypothesized relationships by simulating combinations of drought and elevated temperature (+5°C) and assessing the ecophysiological and mortality responses of both a dominant invasive grass (Pennisetum ciliare or buffelgrass) and a dominant native grass (Heteropogan contortus or tanglehead). While both grasses survived protracted drought at ambient temperatures by inducing dormancy, drought under warmed conditions exceeded the tolerance limits of the native species, resulting in greater and more rapid mortality than exhibited by the invasive. Thus, two major drivers of global environmental change, biological invasion and climate change, can be expected to synergistically accelerate ecosystem degradation unless large-scale interventions are enacted.  相似文献   

5.
A common but often less tested explanation for the successful invasion of alien species is that invasive alien species outcompete their co-occurring natives, which may not always be the case. In this study, we established artificial environmental gradients in a series of pot experiments with controlled environments to investigate the effects of salinity, sediment type and waterlogging on the performance of and interactions between Phragmites australis (native) and Spartina alterniflora (alien), which generally co-exist in the saline intertidal zones of Chinese and American coasts. Significant effects of salinity and waterlogging were detected on biomass production and morphological characteristics of S. alterniflora and P. australis, and the competitive interactions between the two species were found to vary with all three environmental factors in our experiments. Relative Neighbor Effect (RNE) analyses indicate that competitive dominance of S. alterniflora occurred under the conditions of high salinity, sandy sediment and full immersion, whereas P. australis showed competitive dominance under the conditions of low salinity and non-immersion. Our results suggest that S. alterniflora might outcompete P. australis under conditions present in early salt marsh succession, which support the viewpoint that the outcomes of competition between co-occurring native and invasive alien plants depend on the growing conditions. The implication of this study is that in response to the environmental changes expected from seawater intrusion and sea-level rise, the range of S. alterniflora is expected to expand further in the Yangtze River estuary in the future.  相似文献   

6.
滨海湿地生态系统具有较高的初级生产力,是地球生态系统主要的碳库之一。然而,气候变暖和外来物种入侵通过改变植物光合特征性能使这一碳库的稳定性存在诸多的不确定性。利用在江苏盐城芦苇湿地和互花米草湿地建设的两个增温观测站,采用便携式光合荧光测量系统研究了本土植物芦苇(Phragmites australis)和入侵物种互花米草(Spartina alterniflora)光合特性对模拟增温的响应特征和机制。光合作用日调查变化曲线显示,增温使芦苇的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)都发生了显著的下降,但互花米草的各同名参数却表现出相反的变化特征,表明增温使互花米草的生理机能增强,促进了光合作用;根据Pn和胞间CO2浓度(Ci)的变化趋势推断互花米草和芦苇光合速率变化均为非气孔限制因素驱动。利用直角双曲线修正模型拟合的光响应曲线结果显示,芦苇增温组的光响应曲线位于对照组下方,互花米草增温组的光响应曲线位于对照组上方;增温降低了所研究植物的光补偿点(LCP),表明增温可提高两种植物利用弱光的能力;增温增加了互花米草光补偿点(LCP)和光饱和点(LSP)间值域范围,从而揭示了增温可有效提高互花米草利用光合有效辐射的能力;增温降低了芦苇的暗呼吸速率(Rd),芦苇受到增温的胁迫,在减缓新陈代谢的同时也减弱了光合作用,而互花米草表现出相反特征。由此推测增温条件下入侵植物互花米草同化大气CO2的能力(即碳汇能力)优于本土植物芦苇,这也是互花米草成为入侵物种的主要原因之一。  相似文献   

7.
The invasion of non-indigenous plants is considered one of the primary threats to rare and endangered species as well as to the integrity and function of North American ecosystems. However, many of the suspected negative ecosystem impacts are based on anecdotal evidence. For example, there is almost unanimous agreement among natural resource managers of the detrimental ecological impacts of species such as Lythrum salicaria (purple loosestrife), Phragmites australis (common reed) and Alliaria petiolata (garlic mustard) but convincing documentation is scarce. Experimental and theoretical ecology predicts large ecosystem impacts of the most widespread invasive species. However, it is difficult to prioritize control of species that occur at intermediate densities. Long-term monitoring before and during the invasion as well as before, during and after any control attempts can provide valuable ecological information. In particular, it is important to understand how changes in the abundance of species influence ecosystem properties and processes which, in turn, will help guide management decisions. Ideally, this monitoring has to go beyond 'simple impacts on plant communities, involve cross-disciplinary teams of scientists and should incorporate many different taxa and their interactions. Monitoring design and data collection should be sophisticated enough to allow statistically sound data analysis. The available information will be paramount in (1) developing new political and scientific guidelines in invasive species management, (2) helping resolve potential conflicts of interest and (3) helping change public attitudes regarding growth, sale, and control of non-indigenous species.  相似文献   

8.
As a species for ecological engineering, Spartina alterniflora was introduced to Chongming Dongtan in 1995, and over the last 10 years, this species has rapidly invaded large areas of the Chongming Dongtan nature reserve. In this study, use of a normalized biomass size-spectra (NBSS) approach was explored to evaluate the possible impacts of S. alterniflora invasion on the benthic communities along gradients of intertidal zones and the invasion history of S. alterniflora within the nature reserve. The results showed that the characteristics of macrobenthic communities and the variation in macrobenthic communities described by the first two CCA axes revealed clearly the gradients of elevation and invasion history of S. alterniflora. The differences in the macrobenthic assemblages between the Spartina alterniflara marshes and the native Phragmites australis marshes decreased with increasing of invasion history of S. alterniflara. The macrobenthic biomass showed a decreasing trend, while the meiobenthic biomass showed a reverse trend along the elevation gradient. The macrobenthic biomass of S. alterniflora marshes with longer invasion history was higher than that at recently invaded S. alterniflora marshes, while the meiobenthic biomass was lower. The slopes of NBSS for the sampling sites showed a trend of steeper slopes with decreasing of elevation and at the recently invaded S. alterniflora marshes than that at marshes with longer invasion history, while the differences between the native P. australis marshes and the S. alterniflora marshes with long invasion history tended to be diminished. The NBSS approach could thus be used more widely to detect possible impacts of S. alterniflara invasion on benthic assemblages. This study also indicated the potential for this approach to provide valuable insights into the ecosystem ecology of invasive species, which could be very important for wetland biodiversity conservation and resource management in the Yangtze River Estuary and other such impacted areas.  相似文献   

9.
Invasive plants affect soil food webs through various resource inputs including shoot litter, root litter and living root input. The net impact of invasive plants on soil biota has been recognized; however, the relative contributions of different resource input pathways have not been quantified. Through a 2 × 2 × 2 factorial field experiment, a pair of invasive and native plant species (Spartina alterniflora vs. Phragmites australis) was compared to determine the relative impacts of their living roots or shoots and root litter on soil microbial and nematode communities. Living root identity affected bacteria-to-fungi PLFA ratios, abundance of total nematodes, plant-feeding nematodes and omnivorous nematodes. Specifically, the plant-feeding nematodes were 627% less abundant when living roots of invasive S. alterniflora were present than those of native P. australis. Likewise, shoot and root biomass (within soil at 0–10 cm depth) of S. alterniflora was, respectively, 300 and 100% greater than those of P. australis. These findings support the enemy release hypothesis of plant invasion. Root litter identity affected other components of soil microbiota (that is, bacterial-feeding nematodes), which were 34% more abundant in the presence of root litter of P. australis than S. alterniflora. Overall, more variation associated with nematode community structure and function was explained by differences in living roots than root or shoot litter for this pair of plant species sharing a common habitat but contrasting invasion degrees. We conclude that belowground resource input is an important mechanism used by invasive plants to affect ecosystem structure and function.  相似文献   

10.
Invasive species that strongly modify their physical habitat are a particular management concern. Theoretical models predict that habitat modification could speed spread rates or allow invasion of sites that would otherwise resist invasion. There are few empirical tests of this hypothesis, however. We tested whether habitat modification by invading Spartina alterniflora populations facilitates conspecific seedling recruitment and spatial spread in Willapa Bay, WA, USA. Established S. alterniflora individuals strongly modified their local physical environment. Hydrologic flow, porewater salinity, and light availability were decreased while sediment NH4 + increased with increasing S. alterniflora stem density. The S. alterniflora seed bank was greater and spring seedlings were denser within meadows of S. alterniflora than on unvegetated tideflats. However, almost all seedling recruitment after 1 year occurred on tideflats or on meadow edge plots where the above ground S. alterniflora biomass had been removed. Instead of facilitating invasive spread, ecosystem engineering in this system appears to create conditions that inhibit local seedling recruitment. These results suggest that the influence of ecosystem engineering on invasive spread is highly contingent on the relative spatial scales of habitat modification, environmental heterogeneity, and propagule availability. Control activities could change these spatial relationships, however, inadvertently promoting invasive recruitment.  相似文献   

11.

On a global scale, invasive grasses threaten biodiversity and ecosystem function. Nevertheless, the importation of forage grasses is a significant economic force driven by globalization. Pastureland and rangeland are of critical economic and ecological importance, but novel grass species may lead to invasion. Recognizing that economically important species can also be ecologically damaging creates a contentious debate for land managers, policymakers, and ecologists alike. Many Afrotropical perennial grass species have been intentionally introduced pantropically given their high forage production and resistance to stress. However, these traits may also confer competitive ability, increasing the possibility of unintended escape and invasion. Further, these traits have posed challenges for traditional control methods using chemicals, prescribed fire, and mowing. The use of classic biological control may alleviate the ecological impact in invaded areas. In this literature synthesis we examine Guinea grass (Megathyrsus maximus); whose economic value in many countries is undeniable, yet its impact on native ecosystems is a mounting concern. First, we introduce Guinea grass taxonomy, general biology and ecology, and the geographic and genetic origins. Second, we review the economic value and the ecological impacts. Third, we review the control of Guinea grass in undesired areas using chemical and mechanical means. Finally, we review current efforts to use biological control.

  相似文献   

12.
Invasive plants strongly affect physical and biotic environments of native ecosystems. Insects and other arthropods as one of the major components of many ecosystems are very sensitive to subtle changes in abiotic and biotic environments. We examined the effects of exotic Spartina alterniflora invasion on community structure and diets of arthropods in a saltmarsh previously dominated by native Phragmites australis in Yangtze River estuary through net sweeping and plant harvesting methods and stable isotope analysis. Our results showed that diversity indices were not significantly different between exotic and native plant communities, but the total abundance of insects estimated through plant harvesting method was found to be lower in Spartina monoculture than that in Phragmites monoculture. Community structure of insects in Spartina monoculture was dissimilar to that in Phragmites monoculture and PhragmitesSpartina mixture. Moreover, stable carbon isotope patterns of arthropods were significantly different between Phragmites and Spartina monocultures. Although some native arthropods (perhaps generalists) shifted their diets, many native taxa did prefer Phragmites to Spartina even in Spartina monoculture. Spartina invasions resulted in reduced abundances of some arthropds, and increased dominance of others feeding preferably on Spartina. This study provides evidence that invasive plants can change the community structure and diets of native arthropods, which will eventually alter the arthropod food web, and affect the integrity and functioning of native ecosystems within a nature reserve that has been set aside for conserving the native biodiversity and maintaining the ecosystem integrity. In this sense, Spartina invasions in the Yangtze River estuary need to be managed appropriately.  相似文献   

13.
This study tested a vegetation strategy for controlling Phragmites australis invasion into brackish marshes as an alternative to the current technique of repeated herbicide sprays followed by burning. This strategy involves blocking P. australis by planting desired plants selected from wild populations and/or tissue culture regenerants at key points on the major routes of P. australis invasion. The planting of native species was conducted at three sites in a herbicide-treated P. australis marsh near Salem, NJ. Wild population selections of three upland marsh shrubs, Myrica cerifera, Baccharis halimifolia, and Iva frutescens, as well as two grass species, Spartina alterniflora and Spartina patens, and two rushes, Juncus gerardi and Juncus roemerianus, were planted according to their normal zonation positions. Tissue culture regenerated plants of the two grasses and two rushes, and the sedge species Scirpus robustus, were also planted. Plant growth at each site was monitored each year after planting for up to 3 years. Most plants of B. halimifolia, I. frutescens, J. roemerianus, and S. patens demonstrated a consistent vigorous growth at all three sites, whether or not the plants were collected from wild populations or were tissue culture regenerants. These multi-layered walls of plants demonstrated effectiveness in controlling the P. australis by restricting or inhibiting its spread. Upon screening 48 regenerated plants of S. patens at one of the three sites, we found that some regenerants showed enhanced characteristics for blocking P. australis, such as greater expansion and a high stem density. The availability of the tissue culture-regenerated plants of the native marsh species makes it possible to select lines from local genotypes that have desirable characteristics for wetland restoration projects, such as blocking P. australis reinvasion.  相似文献   

14.
Fire is a globally important ecosystem process, and invasive grass species generally increase fire spread by increasing the fuel load and continuity of native grassland fuelbeds. We suggest that invasive grasses that are photosynthetically active, while the native plant community is dormant reduce fire spread by introducing high-moisture, live vegetation gaps in the fuelbed. We describe the invasion pattern of a high-moisture, cool-season grass, tall fescue (Schedonorus phoenix (Scop.) Holub), in tallgrass prairie, and use spatially explicit fire behavior models to simulate fire spread under several combinations of fuel load, invasion, and fire weather scenarios. Reduced fuel load and increased extent of tall fescue invasion reduced fire spread, but high wind speed and low relative humidity can partially mitigate these effects. We attribute reduced fire spread to asynchrony in the growing seasons of the exotic, cool-season grass, tall fescue, and the native, warm-season tallgrass prairie community in this model system. Reduced fire spread under low fuel load scenarios indicate that fuel load is an important factor in fire spread, especially in invaded fuel beds. These results present a novel connection between fire behavior and asynchronous phenology between invasive grasses and native plant communities in pyrogenic ecosystems.  相似文献   

15.
Methane (CH4) is an important greenhouse gas whose emission from the largest source, wetlands is controlled by a number of environmental variables amongst which temperature, water-table, the availability of substrates and the CH4 transport properties of plants are most prominent and well characterised. Coastal wetland ecosystems are vulnerable to invasion by alien plant species which can make a significant local contribution to altering their species composition. However the effect of these changes in species composition on CH4 flux is rarely examined and so is poorly understood. Spartina alterniflora, a perennial grass native to North America, has spread rapidly along the south-east coast of China since its introduction in 1979. From 2002, this rapid invasion has extended to the tidal marshes of the Min River estuary, an area that, prior to invasion was dominated by the native plant Cyperus malaccensis. Here, we compare CH4 flux from the exotic invasive plant S. alterniflora with measurements from the aggressive native species Phragmites australis and the native species C. malaccensis following 3-years of monitoring. CH4 emissions were measured over entire tidal cycles. Soil CH4 production potentials were estimated for stands of each of above plants both in situ and in laboratory incubations. Mean annual CH4 fluxes from S. alterniflora, P. australis and C. malaccensis dominated stands over the 3 years were 95.7 (±18.7), 38.9 (±3.26) and 10.9 (±5.26) g m?2 year?1, respectively. Our results demonstrate that recent invasion of the exotic species S. alterniflora and the increasing presence of the native plant P. australis has significantly increased CH4 emission from marshes that were previously dominated by the native species C. malaccensis. We also conclude that higher above ground biomass, higher CH4 production and more effective plant CH4 transport of S. alterniflora collectively contribute to its higher CH4 emission in the Min River estuary.  相似文献   

16.
Invasive species alter ecosystem structure, impact biodiversity, and have significant economic costs. In Oregon's Willamette Valley, invasive grasses Arrhenatherum elatius and Schedonorus arundinaceus alter the dynamics of the phenologically paired interaction between an endangered butterfly, Icaricia icarioides fenderi (Fender's blue), and its larval host plant, Lupinus oreganus (Kincaid's lupine). To test methods to restore this interaction, we established a 3‐year experiment where a post‐emergent grass‐specific herbicide, fluazifop‐p‐butyl, was applied to Fender's blue habitat. Plant community data were recorded throughout the growing season at eight paired plots for 1 year prior to treatment and 3 years during treatment. We asked whether annual application of herbicide could reduce the height of invasive grasses to levels at or beneath the height of Kincaid's lupine racemes throughout the Fender's blue flight season. We hypothesized that native forb species, which are critical nectar sources for Fender's blue, would increase in cover and frequency following the release from competitive dominance of invasive grasses. Grass‐specific herbicide reduced grass height during the flight season of Fender's blue, but with several costs. We found no change in nectar and a suppression of lupine growth in plots in response to experimental herbicide treatment. Each study site had multiple secondary invaders; the long‐term impact of these new invaders is unknown. We suggest that herbicide application results in a net negative effect in the context of Fender's blue habitat restoration. That is, the costs to primary resources for Fender's blue and the influx of secondary invaders may be as problematic as the primary invasion by non‐native grasses.  相似文献   

17.
盐度和淹水对长江口潮滩盐沼植物碳储量的影响   总被引:1,自引:0,他引:1  
薛莲  李秀珍  闫中正  张骞  丁文慧  黄星 《生态学报》2018,38(9):2995-3003
盐生植物是盐沼有机碳储存的"临时库",也是土壤有机碳累积的主要来源,其碳储量大小对盐沼生态系统"碳汇"功能的发挥十分重要。以长江口潮滩本地种芦苇(Phragmites australis)和海三棱藨草(Scirpus mariqueter),及入侵种互花米草(Spartina alterniflora)为研究对象,采用单因素盆栽实验,模拟分析淹水盐度(0、5、10、15、25和35)、淹水深度(0、10、20、40、60cm和80cm)和淹水频率(每天、每3天、每7天、每10天和每15天)变化对各盐生植物地上、地下和总体碳储量大小的影响。研究结果表明,随着淹水盐度增加,芦苇、互花米草和海三棱藨草地上部分与总体碳储量均显著降低。土壤盐度可分别解释其地上部分碳储量变异的47.2%、66.5%和72.7%,与总体碳储量变异的34.7%、45.0%和62.0%。随着淹水深度增加,芦苇地上部分、总体碳储量和海三棱藨草地上部分碳储量均显著降低,其变异的68.6%、28.5%和71.1%可由淹水深度变化(10—80cm)解释。互花米草在80cm淹水深度下仍有较高的地上部分碳储量和总体碳储量。3种盐生植物碳储量对淹水频率变化的响应差异均不显著,所有处理地下部分碳储量差异也未达到显著水平。总体而言,互花米草对水盐胁迫的耐受性要强于本地种芦苇和海三棱藨草。尽管互花米草和芦苇具有相对较高的碳储量,但水盐胁迫对其碳储量的显著抑制作用不容忽视。海三棱藨草碳储量本就不高,输入土壤的有机碳量较为有限,海平面上升及盐水入侵等逆境胁迫会使其对盐沼"碳汇"贡献更加微弱。  相似文献   

18.
Gradients in oxygen availability and salinity are among the most important environmental parameters influencing zonation in salt marsh communities. The combined effects of oxygen and salinity on the germination of two salt marsh grasses, Spartina alterniflora and Phragmites australis, were studied in growth chamber experiments. Germination of both species was initiated by emergence of the shoot and completed by root emergence. Percentage S. alterniflora germination was reduced at high salinity (40 g NaCl/L) and in decreased oxygen (5 and 2.5%). In 0% oxygen shoots emerged, but roots did not. P. australis germination was reduced at a lower salinity (25 g NaCl/L) than S. alterniflora, and inhibited at 40 g NaCl/L and in anoxia. However, a combination of hypoxia (10 and 5% O2) and moderate salinity (5 and 10 g NaCl/L) increased P. australis germination. When bare areas in the salt marsh are colonized, the different germination responses of these two species to combinations of oxygen and salt concentrations are important in establishing their initial zonation. In high salinity wetlands S. alterniflora populates the lower marsh and P. australis occupies the high marsh at the upland boundary.  相似文献   

19.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   

20.
互花米草(Spartina alterniflora)是典型的外来入侵物种,因其繁殖力和适应力强难以防治,直接威胁我国滨海滩涂湿地生物多样性,改变了该生态系统的结构和功能;麋鹿(Elaphurus davidianus)是我国I级保护动物,是野生动物迁地保护和回归自然的典范,但仍面临野生种群稳定性低、与保护区环境承载力矛盾尖锐的问题。麋鹿喜食互花米草,其牧食行为可有效调控互花米草的时空分布格局,提升滨海滩涂湿地生态系统功能和稳定性,并为其自身野化回归提供良好的环境。目前针对互花米草防治和麋鹿保护的研究较多,但少有二者耦合作用的探讨。尝试借助草地农业系统理论阐释互花米草防治和麋鹿保护(互花米草&麋鹿)耦合发展的范式和潜在机制,即寻求基于自然的克服系统相悖的解决方案。以期打破珍稀物种保护和入侵物种防控各自为战的范式,探索二者耦合发展思路和陆海农业实践。同时,探讨了利用无人机等技术搭建滨海滩涂湿地互花米草&麋鹿耦合系统的空-天-地一体化监测、分析和管理体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号