首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic partitioning of protein folding and aggregation.   总被引:1,自引:0,他引:1  
We have systematically studied the effects of 40 single point mutations on the conversion of the denatured form of the alpha/beta protein acylphosphatase (AcP) into insoluble aggregates. All the mutations that significantly perturb the rate of aggregation are located in two regions of the protein sequence, residues 16-31 and 87-98, each of which has a relatively high hydrophobicity and propensity to form beta-sheet structure. The measured changes in aggregation rate upon mutation correlate with changes in the hydrophobicity and beta-sheet propensity of the regions of the protein in which the mutations are located. The two regions of the protein sequence that determine the aggregation rate are distinct from those parts of the sequence that determine the rate of protein folding. Dissection of the protein into six peptides corresponding to different regions of the sequence indicates that the kinetic partitioning between aggregation and folding can be attributed to the intrinsic conformational preferences of the denatured polypeptide chain.  相似文献   

2.
Aggregation of monoclonal antibodies is often a multi‐step process involving structural alterations in monomeric proteins and subsequent formation of soluble or insoluble oligomers. The role of local conformational stability and dynamics of native and/or partially altered structures in determining the aggregation propensity of monoclonal antibodies, however, is not well understood. Here, we investigate the role of conformational stability and dynamics of regions with distinct solvent exposure in determining the aggregation propensity of an IgG1 and IgG2 monoclonal antibody. The temperatures employed span the pre‐unfolding range (10–40°C) and the onset temperatures (Tonset) for exposure of apolar residues (~50°C), alterations in secondary structures (~60°C) and initiation of visible aggregate formation (~60°C). Solvent‐exposed regions were found to precede solvent‐shielded regions in an initiation of aggregation for both proteins. Such a process was observed upon alterations in overall tertiary structure while retaining the secondary structures in both the proteins. In addition, a greater dynamic nature of solvent‐shielded regions in potential intermediates of IgG1 and the improved conformational stability increased its resistance to aggregation when compared to IgG2. These results suggest that local conformational stability and fluctuations of partially altered structures can influence the aggregation propensity of immunoglobulins.  相似文献   

3.
High-affinity antibodies are critical for numerous diagnostic and therapeutic applications, yet their utility is limited by their variable propensity to aggregate either at low concentrations for antibody fragments or high concentrations for full-length antibodies. Therefore, determining the sequence and structural features that differentiate aggregation-resistant antibodies from aggregation-prone ones is critical to improving their activity. We have investigated the molecular origins of antibody aggregation for human V(H) domain antibodies that differ only in the sequence of the loops containing their complementarity determining regions (CDRs), yet such antibodies possess dramatically different aggregation propensities in a manner not correlated with their conformational stabilities. We find the propensity of these antibodies to aggregate after being transiently unfolded is not a distributed property of the CDR loops, but can be localized to aggregation hotspots within and near the first CDR (CDR1). Moreover, we have identified a triad of charged mutations within CDR1 and a single charged mutation adjacent to CDR1 that endow the poorly soluble variant with the desirable biophysical properties of the aggregation-resistant antibody. Importantly, we find that several other charged mutations in CDR1, non-CDR loops and the antibody scaffold are incapable of preventing aggregation. We expect that our identification of aggregation hotspots that govern antibody aggregation within and proximal to CDR loops will guide the design and selection of antibodies that not only possess high affinity and conformational stability, but also extreme resistance to aggregation.  相似文献   

4.
Zhu J  Fan H  Periole X  Honig B  Mark AE 《Proteins》2008,72(4):1171-1188
A protocol is presented for the global refinement of homology models of proteins. It combines the advantages of temperature-based replica-exchange molecular dynamics (REMD) for conformational sampling and the use of statistical potentials for model selection. The protocol was tested using 21 models. Of these 14 were models of 10 small proteins for which high-resolution crystal structures were available, the remainder were targets of the recent CASPR exercise. It was found that REMD in combination with currently available force fields could sample near-native conformational states starting from high-quality homology models. Conformations in which the backbone RMSD of secondary structure elements (SSE-RMSD) was lower than the starting value by 0.5-1.0 A were found for 15 out of the 21 cases (average 0.82 A). Furthermore, when a simple scoring function consisting of two statistical potentials was used to rank the structures, one or more structures with SSE-RMSD of at least 0.2 A lower than the starting value was found among the five best ranked structures in 11 out of the 21 cases. The average improvement in SSE-RMSD for the best models was 0.42 A. However, none of the scoring functions tested identified the structures with the lowest SSE-RMSD as the best models although all identified the native conformation as the one with lowest energy. This suggests that while the proposed protocol proved effective for the refinement of high-quality models of small proteins scoring functions remain one of the major limiting factors in structure refinement. This and other aspects by which the methodology could be further improved are discussed.  相似文献   

5.
A growing number of proteins are being identified that are biologically active though intrinsically disordered, in sharp contrast with the classic notion that proteins require a well-defined globular structure in order to be functional. At the same time recent work showed that aggregation and amyloidosis are initiated in amino acid sequences that have specific physico-chemical properties in terms of secondary structure propensities, hydrophobicity and charge. In intrinsically disordered proteins (IDPs) such sequences would be almost exclusively solvent-exposed and therefore cause serious solubility problems. Further, some IDPs such as the human prion protein, synuclein and Tau protein are related to major protein conformational diseases. However, this scenario contrasts with the large number of unstructured proteins identified, especially in higher eukaryotes, and the fact that the solubility of these proteins is often particularly good. We have used the algorithm TANGO to compare the beta aggregation tendency of a set of globular proteins derived from SCOP and a set of 296 experimentally verified, non-redundant IDPs but also with a set of IDPs predicted by the algorithms DisEMBL and GlobPlot. Our analysis shows that the beta-aggregation propensity of all-alpha, all-beta and mixed alpha/beta globular proteins as well as membrane-associated proteins is fairly similar. This illustrates firstly that globular structures possess an appreciable amount of structural frustration and secondly that beta-aggregation is not determined by hydrophobicity and beta-sheet propensity alone. We also show that globular proteins contain almost three times as much aggregation nucleating regions as IDPs and that the formation of highly structured globular proteins comes at the cost of a higher beta-aggregation propensity because both structure and aggregation obey very similar physico-chemical constraints. Finally, we discuss the fact that although IDPs have a much lower aggregation propensity than globular proteins, this does not necessarily mean that they have a lower potential for amyloidosis.  相似文献   

6.
In a previous article (Zbilut et al., Biophys J 2003;85:3544-3557), we demonstrated how an aggregation versus folding choice could be approached considering hydrophobicity distribution and charge. In this work, our aim is highlighting the mutual interaction of charge and hydrophobicity distribution in the aggregation process. Use was made of two different peptides, both derived from a transmembrane protein (amyloid precursor protein; APP), namely, Abeta(1-28) and Abeta(1-40). Abeta(1-28) has a much lower aggregation propensity than Abeta(1-40). The results obtained by means of molecular dynamics simulations show that, when submitted to the most "aggregation-prone" environment, corresponding to the isoelectric point and consequently to zero net charge, both peptides acquire their maximum flexibility, but Abeta(1-40) has a definitely higher conformational mobility than Abeta(1-28). The absence of a hydrophobic "tail," which is the most mobile part of the molecule in Abeta(1-40), is the element lacking in Abeta(1-28) for obtaining a "fully aggregating" phenotype. Our results suggest that conformational flexibility, determined by both hydrophobicity and charge effect, is the main mechanistic determinant of aggregation propensity.  相似文献   

7.
Factors affecting the accuracy of molecular dynamics (MD) simulations are investigated by comparing generalized order parameters for backbone NH vectors of the B3 immunoglobulin‐binding domain of streptococcal protein G (GB3) derived from simulations with values obtained from NMR spin relaxation (Yao L, Grishaev A, Cornilescu G, Bax A, J Am Chem Soc 2010;132:4295‐4309.). Choices for many parameters of the simulations, such as buffer volume, water model, or salt concentration, have only minor influences on the resulting order parameters. In contrast, seemingly minor conformational differences in starting structures, such as orientations of sidechain hydroxyl groups, resulting from applying different protonation algorithms to the same structure, have major effects on backbone dynamics. Some, but not all, of these effects are mitigated by increased sampling in simulations. Most discrepancies between simulated and experimental results occur for residues located at the ends of secondary structures and involve large amplitude nanosecond timescale transitions between distinct conformational substates. These transitions result in autocorrelation functions for bond vector reorientation that do not converge when calculated over individual simulation blocks, typically of length similar to the overall rotational diffusion time. A test for convergence before averaging the order parameters from different blocks results in better agreement between order parameters calculated from different sets of simulations and with NMR‐derived order parameters. Thus, MD‐derived order parameters are more strongly affected by transitions between conformational substates than by fluctuations within individual substates themselves, while conformational differences in the starting structures affect the frequency and scale of such transitions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Despite much progress in understanding the folding and the aggregation processes of proteins, the rules defining their interplay have yet to be fully defined. This problem is of particular importance since many diseases are initiated by protein unfolding and hence the propensity to aggregate competes with intramolecular collapse and other folding events. Here, we describe the roles of intramolecular and intermolecular interactions in defining the length of the lag time and the apparent rate of elongation of the 100-residue protein human β2-microglobulin at pH 2.5, commencing from an acid-denatured state that lacks persistent structure but contains significant non-random hydrophobic interactions. Using a combination of site-directed mutagenesis, quantitative kinetic analysis and computational methods, we show that only a single region of about 10 residues in length, determines the rate of fibril formation, despite the fact that other regions exhibit a significant intrinsic propensity for aggregation. We rationalise these results by analysing the effect of incorporating the conformational properties of acid-unfolded β2-microglobulin and its variants at pH 2.5 as measured by NMR spectroscopy into the Zyggregator aggregation prediction algorithm. These results demonstrate that residual structure in the precursor state modulates the intrinsic propensity of the polypeptide chain to aggregate and that the algorithm developed here allows the key regions for aggregation to be more clearly identified and the rates of their self-association to be predicted. Given the common propensity of unfolded chains to form non-random intramolecular interactions as monomers and to self-assemble subsequently into amyloid fibrils, the approach developed should find widespread utility for the prediction of regions important in amyloid formation and their rates of self-assembly.  相似文献   

9.
Here, we describe peptide aggregation, which is also known as enzymatic protein resynthesis. Whey protein hydrolysate (WPH) is the starting material for assembling peptides. Analyses of the involved amino acids, intrinsic fluorescence, fluorescence phase diagram, secondary structure, turbidity, and surface hydrophobicity were performed to investigate the reaction process. The aggregation mechanism consists of two parts: 1) formation and 2) aggregation of the building blocks that form the ordered secondary β-sheet structure. Constructing the building blocks requires at least one intermediate state, which is formed after 0.5 hours. Non-synergistic changes in the secondary and tertiary structures then allow the intermediate state to emerge.  相似文献   

10.
Human alpha-Synuclein (alphaSyn) is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of alphaSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between alphaSyn's unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy-based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant alphaSyn. The conformational heterogeneity of monomeric alphaSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and "beta-like" structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the "beta-like" structures significantly increased in different conditions promoting the aggregation of alphaSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric alphaSyn conformers, positively correlated with conditions known to promote the formation of aggregates. A new tool is thus made available to test directly the influence of mutations and pharmacological strategies on the conformational equilibrium of monomeric alphaSyn.  相似文献   

11.
Anionic surfaces promote protein fibrillation in vitro and in vivo. Monomeric SDS has also been shown to stimulate this process. We describe the dynamics of conformational changes and aggregative properties of the model protein S6 at sub-micellar SDS concentrations. S6 exhibits a rich and pH-sensitive diversity in conformational changes around 0.2-2 mM SDS, in which several transitions occur over time scales spanning milliseconds to hours. Monomeric SDS readily precipitates S6 within minutes at pH-values of 5 and below to form states able to bind the fibril-specific dye thioflavin T. At pH 5.5, the process is much slower and shows a mutagenesis-sensitive lag, leading to different forms of organized but not classically fibrillar aggregates with native-like levels of secondary structure, although the tertiary structure is significantly rearranged. The slow aggregation process may be linked to conformational changes that occur at the second-time scale in the same SDS concentration range, leading to an altered structure, possibly with unfolding around the C-terminal helix. The S6 aggregates may be differently trapped states, equivalent to pre-fibrillar structures seen at early stages in the fibrillation process for other proteins. The low quantities of anionic species required suggest that the aggregates may have parallels in vivo.  相似文献   

12.
X-ray structures of carbonmonoxymyoglobin (MbCO) are available for different pH values. We used conventional electrostatic continuum methods to calculate the titration behavior of MbCO in the pH range from 3 to 7. For our calculations, we considered five different x-ray structures determined at pH values of 4, 5, and 6. We developed a Monte Carlo method to sample protonation states and conformations at the same time so that we could calculate the population of the considered MbCO structures at different pH values and the titration behavior of MbCO for an ensemble of conformers. To increase the sampling efficiency, we introduced parallel tempering in our Monte Carlo method. The calculated population probabilities show, as expected, that the x-ray structures determined at pH 4 are most populated at low pH, whereas the x-ray structure determined at pH 6 is most populated at high pH, and the population of the x-ray structures determined at pH 5 possesses a maximum at intermediate pH. The calculated titration behavior is in better agreement with experimental results compared to calculations using only a single conformation. The most striking feature of pH-dependent conformational changes in MbCO-the rotation of His-64 out of the CO binding pocket-is reproduced by our calculations and is correlated with a protonation of His-64, as proposed earlier.  相似文献   

13.
Small heat shock proteins (sHsps), which are categorized into a class of molecular chaperones, bind and stabilize denatured proteins to prevent aggregation. The sHsps undergo transition between different oligomeric states to control their hydrophobicity. So far, only the structures of sHsps in large oligomeric states have been reported. Here we report the structure of StHsp14.0 from Sulfolobus tokodaii in the dimeric state, which is formed by means of a mutation at the C-terminal IXI/V motif. The dimer is the sole building block in two crystal forms, and the dimeric mode is the same as that in the large oligomers. The N-terminal helix has variety in its conformation. Furthermore, spectroscopic and biochemical experiments were performed to investigate the conformational variability at the N-terminus. The structural, dynamical and oligomeric properties suggest that chaperone activity of StHsp14.0 is mediated by partially dissolved oligomers.  相似文献   

14.
Dialysis‐related amyloidosis (DRA) is a severe condition characterized by the accumulation of amyloidogenic β2‐microglobulin (β2m) protein around skeletal joints and bones. The recent studies highlighted a critical role of the DE loop region for β2m stability and amyloid aggregation propensity. Despite significant efforts, the molecular mechanism of enhanced aggregation due to D59P mutation in the DE loop region remain elusive. In the present study, explicit‐solvent molecular dynamics (MD) simulations were performed to examine the key changes in the structural and dynamic properties of wild type (wt) β2m upon D59P mutation. MD simulations reveal a decrease in the average number of hydrogen bonds in the loop regions on D59P mutation that enhances conformational flexibility, which lead to higher aggregation propensity of D59P as compare to wt β2m. The principal component analysis (PCA) highlight that D59P covers a larger region of phase space and display a higher trace value than wt β2m, which suggest an overall enhancement in the conformational flexibility. D59P display two minimum energy basins in the free energy landscape (FEL) that are associated with thermodynamically less stable conformational states as compare to single minimum energy basin in wt β2m. The present study provides theoretical insights into the molecular mechanism behind the higher aggregation propensity of D59P as compare to wt β2m.  相似文献   

15.
Ferreon AC  Deniz AA 《Biochemistry》2007,46(15):4499-4509
Alpha-synuclein aggregation has been tightly linked with the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Despite the protein's putative function in presynaptic vesicle regulation, the roles of lipid binding in modulating alpha-synuclein conformations and the aggregation process remain to be fully understood. This study focuses on a detailed thermodynamic characterization of monomeric alpha-synuclein folding in the presence of SDS, a well-studied lipid mimetic. Far-UV CD spectroscopy was employed for detection of conformational transitions induced by SDS, temperature, and pH. The data we present here clearly demonstrate the multistate nature of alpha-synuclein folding, which involves two predominantly alpha-helical partially folded thermodynamic intermediates that we designate as F (most folded) and I (intermediately folded) states. Likely structures of these alpha-synuclein conformational states are also discussed. These partially folded forms can exist in the presence of either monomeric or micellar forms of SDS, which suggests that alpha-synuclein has an intrinsic propensity for adopting multiple alpha-helical structures even in the absence of micelle or membrane binding, a feature that may have implications for its biological activity and toxicity. Additionally, we discuss the relation between alpha-synuclein three-state folding and its aggregation, within the context of isothermal titration calorimetry and transmission electron microscopy measurements of SDS-initiated oligomer formation.  相似文献   

16.
The folding process of the acylphosphatase from Sulfolobus solfataricus (Sso AcP) has been followed, starting from the fully unfolded state, using a variety of spectroscopic probes, including intrinsic fluorescence, circular dichroism, and ANS binding. The results indicate that an ensemble of partially folded or misfolded species form rapidly on the submillisecond time scale after initiation of folding. This conformational ensemble produces a pronounced downward curvature in the Chevron plot, appears to possess a content of secondary structure similar to that of the native state, as revealed by far-UV circular dichroism, and appears to have surface-exposed hydrophobic clusters, as indicated by the ability of this ensemble to bind to 8-anilino-1-naphthalenesulfonic acid (ANS). Sso AcP folds from this conformational state with a rate constant of ca. 5 s(-1) at pH 5.5 and 37 degrees C. A minor slow exponential phase detected during folding (rate constant of 0.2 s(-1) under these conditions) is accelerated by cyclophilin A and is absent in a mutant of Sso AcP in which alanine replaces the proline residue at position 50. This indicates that for a lower fraction of Sso AcP molecules the folding process is rate-limited by the cis-trans isomerism of the peptide bond preceding Pro50. A comparative analysis with four other homologous proteins from the acylphosphatase superfamily shows that sequence hydrophobicity is an important determinant of the conformational stability of partially folded states that may accumulate during folding of a protein. A low net charge and a high propensity to form alpha-helical structure also emerge as possibly important determinants of the stability of partially folded states. A significant correlation is also observed between folding rate and hydrophobic content of the sequence within this superfamily, lending support to the idea that sequence hydrophobicity, in addition to relative contact order and conformational stability of the native state, is a key determinant of folding rate.  相似文献   

17.
In 5% (v/v) trifluoroethanol, pH 5.5, 25 degrees C one of the acylphosphatases from Drosophila melanogaster (AcPDro2) forms fibrillar aggregates that bind thioflavin T and Congo red and have an extensive beta-sheet structure, as revealed by circular dichroism. Atomic force microscopy indicates that the fibrils and their constituent protofilaments have diameters compatible with those of natural amyloid fibrils. Spectroscopic and biochemical investigation, carried out using near- and far-UV circular dichroism, intrinsic and 1-anilino-8-naphthalenesulfonic acid-derived fluorescence, dynamic light scattering, and enzymatic activity assays, shows that AcPDro2 has, before aggregation, a secondary structure content packing around aromatic and hydrophobic residues, hydrodynamic diameter, and catalytic activity indistinguishable from those of the native protein. The native protein was found to have the same conformational stability under native and aggregating conditions, as determined from urea-induced unfolding. The kinetic analysis supports models in which AcPDro2 aggregates initially without need to unfold and subsequently undergoes a conformational change into amyloid-like structures. Although fully or partially unfolded states have a higher propensity to aggregate, the residual aggregation potential that proteins maintain upon complete folding can be physiologically relevant and be directly involved in the pathogenesis of some protein deposition diseases.  相似文献   

18.
Protein aggregation is linked to a growing list of diseases, but it is also an intrinsic property of polypeptides, because the formation of functional globular proteins comes at the expense of an inherent aggregation propensity. Certain proteins can access aggregation-prone states from native-like conformations without the need to cross the energy barrier for unfolding. This is the case of transthyretin (TTR), a homotetrameric protein whose dissociation into its monomers initiates the aggregation cascade. Domains with structural homology to TTR exist in a number of proteins, including the M14B subfamily carboxypeptidases. We show here that the monomeric transthyretin-like domain of human carboxypeptidase D aggregates under close to physiological conditions into amyloid structures, with the population of folded but aggregation-prone states being controlled by the conformational stability of the domain. We thus confirm that the TTR fold keeps a generic residual aggregation propensity upon folding, resulting from the presence of preformed amyloidogenic β-strands in the native state. These structural elements should serve for functional/structural purposes, because they have not been purged out by evolution, but at the same time they put proteins like carboxypeptidase D at risk of aggregation in biological environments and thus can potentially lead to deposition diseases.  相似文献   

19.
SuperStar is an empirical method for identifying interaction sites in proteins, based entirely on the experimental information about non-bonded interactions, present in the IsoStar database. The interaction information in IsoStar is contained in scatterplots, which show the distribution of a chosen probe around structure fragments. SuperStar breaks a template molecule (e.g. a protein binding site) into structural fragments which correspond to those in the scatterplots. The scatterplots are then superimposed on the corresponding parts of the template and converted into a composite propensity map.The original version of SuperStar was based entirely on scatterplots from the CSD. Here, scatterplots based on protein-ligand interactions are implemented in SuperStar, and validated on a test set of 122 X-ray structures of protein-ligand complexes. In this validation, propensity maps are compared with the experimentally observed positions of ligand atoms of comparable types. Although non-bonded interaction geometries in small molecule structures are similar to those found in protein-ligand complexes, their relative frequencies of occurrence are different. Polar interactions are more common in the first class of structures, while interactions between hydrophobic groups are more common in protein crystals. In general, PDB and CSD-based SuperStar maps appear equally successful in the prediction of protein-ligand interactions. PDB-based maps are more suitable to identify hydrophobic pockets, and inherently take into account the experimental uncertainties of protein atomic positions. If the protonation state of a histidine, aspartate or glutamate protein side-chain is known, specific CSD-based maps for that protonation state are preferred over PDB-based maps which represent an ensemble of protonation states.  相似文献   

20.
Nine neurodegenerative diseases, including Huntington's disease, are associated with the aggregation of proteins containing expanded polyglutamine sequences. The end result of polyglutamine aggregation is a beta-sheet-rich deposit. There exists evidence that an important intermediate in the aggregation process involves intramolecular beta-hairpin structures. However, little is known about the starting state, monomeric polyglutamine. Most experimental studies of monomeric polyglutamine have concluded that the backbone is completely disordered. However, such studies are hampered by the inherent tendency for polyglutamine to aggregate. A recent computational study suggested that the glutamine residues in polyglutamine tracts have a significant propensity to adopt the left-handed polyproline II (P(II)) helical conformation. In this work, we use NMR spectroscopy to demonstrate that glutamine residues possess a high propensity to adopt the P(II) conformation. We present circular dichroism spectra that indicate the presence of significant amounts of P(II) helical structure in short glutamine tracts. These data demonstrate that the propensity to adopt the P(II) structure is retained for glutamine repeats of up to at least 15 residues. Although other structures, such as alpha-helices and beta-sheets, become possible at greater lengths, our data indicate that glutamine residues in monomeric polyglutamine have a significant propensity to adopt the P(II) structure, although not necessarily in long contiguous helical stretches. We note that we have no evidence to suggest that the observed P(II) helical structure is a precursor to polyglutamine aggregation. Nonetheless, increased understanding of monomeric polyglutamine structures will aid our understanding of the aggregation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号