首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Influenza pneumonia causes high mortality every year, and pandemic episodes kill millions of people. Influenza-related mortality has been variously ascribed to an ineffective host response that fails to limit viral replication, an excessive host inflammatory response that results in lung injury and impairment of gas exchange, or to bacterial superinfection. We sought to determine whether lung inflammation promoted or impaired host survival in influenza pneumonia.

Methods and Findings

To distinguish among these possible causes of influenza-related death, we induced robust lung inflammation by exposing mice to an aerosolized bacterial lysate prior to challenge with live virus. The treatment induced expression of the inflammatory cytokines IL-6 and TNF in bronchoalveolar lavage fluid 8- and 40-fold greater, respectively, than that caused by lethal influenza infection. Yet, this augmented inflammation was associated with striking resistance to host mortality (0% vs 90% survival, p = 0.0001) and reduced viral titers (p = 0.004). Bacterial superinfection of virus infected lungs was not observed. When mice were repeatedly exposed to the bacterial lysate, as would be clinically desirable during an influenza epidemic, there was no tachyphylaxis of the induced viral resistance. When the bacterial lysate was administered after the viral challenge, there was still some mortality benefit, and when ribavirin was added to the aerosolized bacterial lysate, host survival was synergistically improved (0% vs 93.3% survival, p<0.0001).

Conclusions

Together, these data indicate that innate immune resistance to influenza can be effectively stimulated, and suggest that ineffective rather than excessive inflammation is the major cause of mortality in influenza pneumonia.  相似文献   

3.
Total Theophylline clearance rate was measured before and 24 hours after standard influenza vaccination in seven men with stable chronic obstructive lung disease. In four, total theophylline clearance rate was also measured 48 hours after vaccine administration. There was no significant change in the clearance rate after either time interval. These results do not support recent recommendations to monitor serum theophylline concentrations or reduce theophylline dosage during the 48-hour period following influenza vaccination. Nevertheless, pending further studies, patients maintained on a regimen of theophylline preparations should be followed clinically for theophylline toxicity for the first several days after receiving influenza vaccine.  相似文献   

4.
5.
Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might partially be attributed to the immunosuppressive effect of nicotine.  相似文献   

6.
The canonical transient receptor potential (TRPC) channels are Ca2+-permeable cationic channels controlling the Ca2+ influx evoked by G protein-coupled receptor activation and/or by Ca2+ store depletion. Here we investigate the involvement of TRPCs in the cell differentiation of lung cancer. The expression of TRPCs and the correlation to cancer differentiation grade in non-small cell lung cancer (NSCLC) were analyzed by real-time PCR and immunostaining using tissue microarrays from 28 patient lung cancer samples. The association of TRPCs with cell differentiation was also investigated in the lung cancer cell line A549 by PCR and Western blotting. The channel activity was monitored by Ca2+ imaging and patch recording after treatment with all-trans-retinoic acid (ATRA). The expression of TRPC1, 3, 4 and 6 was correlated to the differentiation grade of NSCLC in patients, but there was no correlation to age, sex, smoking history and lung cancer cell type. ATRA upregulated TRPC3, TRPC4 and TRPC6 expression and enhanced Ca2+ influx in A549 cells, however, ATRA showed no direct effect on TRPC channels. Inhibition of TRPC channels by pore-blocking antibodies decreased the cell mitosis, which was counteracted by chronic treatment with ATRA. Blockade of TRPC channels inhibited A549 cell proliferation, while overexpression of TRPCs increased the proliferation. We conclude that TRPC expression correlates to lung cancer differentiation. TRPCs mediate the pharmacological effect of ATRA and play important roles in regulating lung cancer cell differentiation and proliferation, which gives a new understanding of lung cancer biology and potential anti-cancer therapy.  相似文献   

7.
Over 100 million women use progesterone therapies worldwide. Despite having immunomodulatory and repair properties, their effects on the outcome of viral diseases outside of the reproductive tract have not been evaluated. Administration of exogenous progesterone (at concentrations that mimic the luteal phase) to progesterone-depleted adult female mice conferred protection from both lethal and sublethal influenza A virus (IAV) infection. Progesterone treatment altered the inflammatory environment of the lungs, but had no effects on viral load. Progesterone treatment promoted faster recovery by increasing TGF-β, IL-6, IL-22, numbers of regulatory Th17 cells expressing CD39, and cellular proliferation, reducing protein leakage into the airway, improving pulmonary function, and upregulating the epidermal growth factor amphiregulin (AREG) in the lungs. Administration of rAREG to progesterone-depleted females promoted pulmonary repair and improved the outcome of IAV infection. Progesterone-treatment of AREG-deficient females could not restore protection, indicating that progesterone-mediated induction of AREG caused repair in the lungs and accelerated recovery from IAV infection. Repair and production of AREG by damaged respiratory epithelial cell cultures in vitro was increased by progesterone. Our results illustrate that progesterone is a critical host factor mediating production of AREG by epithelial cells and pulmonary tissue repair following infection, which has important implications for women’s health.  相似文献   

8.
A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection.  相似文献   

9.

Objective

The aim of this study was to assess cardiovascular involvement in patients with connective tissue disease (CTD), and determine whether interstitial lung disease (ILD) in these patients is associated with elevated cardiovascular risk.

Methods

This study evaluated a retrospective cohort of 436 CTD patients admitted to a large teaching hospital in Zhejiang province, China, along with an additional 436 participants of an annual community health screening conducted in the physical examination center who served as age- and gender-matched controls. Demographic, clinical, serologic and imaging characteristics, as well as medications used by each participant were recorded. Cardiovascular involvement was defined by uniform criteria. Correlations between clinical/serologic factors and cardiovascular involvement were determined by univariate and multivariate analyses.

Results

CTD patients had a significantly higher cardiovascular involvement rate than controls (64.7% vs 23.4%), with higher rates of diabetes, hypertension, and hyperlipidemia, elevated systolic and diastolic pressures, C-reactive protein, total cholesterol, and low-density lipoprotein cholesterol, and lower albumin and high-density lipoprotein cholesterol (all p < 0.05). Furthermore, CTP patients with cardiovascular involvement were significantly older, had higher systolic and diastolic pressures, C-reactive protein, glucose, and uric acid, higher rates of diabetes, hypertension, and use of moderate- to high-dose glucocorticoids, and longer disease duration compared to patients without involvement (all p < 0.05). Moreover, CTD in patients with cardiovascular involvement was more likely to be complicated by ILD (p < 0.01), which manifested as a higher alveolar inflammation score (p < 0.05). In the multivariate analysis, cardiovascular involvement in CTD patients was associated with age, systolic pressure, body mass index, uric acid, disease duration > 2 years, use of moderate- to high-dose glucocorticoids, and ILD with a high alveolar inflammation score.

Conclusion

Cardiovascular involvement is increased in CTD patients, and is associated with ILD with a higher alveolar inflammation score. Thus, early-stage echocardiography and CT scans should be used to detect potential cardiovascular complications in these patients.  相似文献   

10.
11.
Highly pathogenic influenza A viruses cause acute severe pneumonia to which the occurrence of “cytokine storm” has been proposed to contribute. Here we show that interleukin-15 (IL-15) knockout (KO) mice exhibited reduced mortality after infection with influenza virus A/FM/1/47 (H1N1, a mouse-adapted strain) albeit the viral titers of these mice showed no difference from those of control mice. There were significantly fewer antigen-specific CD44+ CD8+ T cells in the lungs of infected IL-15 KO mice, and adoptive transfer of the CD8+ T cells caused reduced survival of IL-15 KO mice following influenza virus infection. Mice deficient in β2-microglobulin by gene targeting and those depleted of CD8+ T cells by in vivo administration of anti-CD8 monoclonal antibody displayed a reduced mortality rate after infection. These results indicate that IL-15-dependent CD8+ T cells are at least partly responsible for the pathogenesis of acute pneumonia caused by influenza A virus.Highly pathogenic influenza A viruses cause acute severe pneumonia that results in high morbidity and significant mortality (11, 12, 24, 26). Elevated levels of serum cytokines and chemokines accompany these clinical manifestations, and the possibility that this “cytokine storm” contributes to increased severity of the disease caused by avian H5N1 virus and by other strains of influenza A virus has been proposed (10, 21, 33). In fact, CCR2-deficient mice [CCR2 is chemokine (C-C motif) receptor 2] were protected from early pathological manifestations despite higher pulmonary titers of the influenza virus A/PR/8/34 (H1N1) strain (7). Tumor necrosis factor receptor 1 (TNFR-1)-deficient mice exhibited significantly reduced morbidity following challenge with H5N1 virus (31). Other cytokines or chemokines have also been investigated (8, 28, 34, 35, 38). Thus, at least some of the elevated proinflammatory cytokines may contribute to the pathogenesis of influenza A virus.Interleukin-15 (IL-15) is a pleiotropic cytokine involved in both innate and adaptive immune responses (20, 36). IL-15 utilizes the β-chain of the IL-2 receptor (IL-2R) (CD122) and the common cytokine receptor γ-chain (CD132) for signal transduction in lymphocytes and therefore shares many biological properties with IL-2 (3). Memory CD8+ T cells, natural killer (NK) cells, NKT cells, and intraepithelial lymphocyte (IEL) T cells (15, 23, 42) decrease in mice with defective IL-15 signaling, indicating the importance of IL-15 in their development and/or maintenance. IL-15 regulates not only the number of memory CD8+ T cells but also activation of their functions, including gamma interferon (IFN-γ) production and cytotoxic activity (40), which are important to target the virus (9). Therefore, it is possible that we may be able to use IL-15 as an immune-enhancing molecular adjuvant in vaccines for protection against various pathogens, including influenza A virus (37).In the present study, we demonstrate that IL-15 knockout (KO) mice exhibited high resistance against infection with mouse-adapted influenza virus A/FM/1/47 (H1N1) strain. We show for the first time that IL-15-dependent CD8+ T cells are at least partly responsible for the pathogenesis of acute pneumonia caused by influenza A virus. In addition, our observations are important in the light of recent research into the use of IL-15 as an adjuvant for vaccination.  相似文献   

12.
流行性感冒(简称“流感”)是由流感病毒引起的急性呼吸道传染疾病,据世界卫生组织统计,流感每年可导致300万~500万严重病例,其中29万~65万病例死亡,给社会带来沉重的经济负担,是一个世界性的公共卫生难题。研究发现宿主细胞中存在多条信号通路参与对流感病毒感染的应答,越来越多的研究表明宿主miRNAs通过直接或间接的方式,在流感病毒感染、复制的不同阶段发挥着重要调控作用。本文综合分析了目前关于宿主细胞miRNA对流感病毒复制调控的研究进展,对不同的miRNA具体的调控机制进行系统地归类总结后发现:甲型流感病毒(Influenza A virus,IAV)的PB1、PB2、NA、NP、M1基因是宿主miRNA直接抑制病毒复制的主要靶基因,而在间接调控过程中宿主miRNA主要作用在RIG-I样受体信号通路,Jak-STAT信号通路和Toll样受体信号通路三条流感病毒应答信号途径中,以上发现将更有助于全面理解宿主miRNA对于流感病毒调控网络和宿主细胞与流感病毒的互作机制。  相似文献   

13.
Parenchymal lung inflammation and airway and alveolar epithelial cell apoptosis are associated with cigarette smoke exposure (CSE), which contributes to chronic obstructive pulmonary disease (COPD). Epidemiological studies indicate that people exposed to chronic cigarette smoke with or without COPD are more susceptible to influenza A virus (IAV) infection. We found increased p53, PAI-1 and apoptosis in AECs, with accumulation of macrophages and neutrophils in the lungs of patients with COPD. In Wild-type (WT) mice with passive CSE (PCSE), p53 and PAI-1 expression and apoptosis were increased in AECs as was lung inflammation, while those lacking p53 or PAI-1 resisted AEC apoptosis and lung inflammation. Further, inhibition of p53-mediated induction of PAI-1 by treatment of WT mice with caveolin-1 scaffolding domain peptide (CSP) reduced PCSE-induced lung inflammation and reversed PCSE-induced suppression of eosinophil-associated RNase1 (EAR1). Competitive inhibition of the p53-PAI-1 mRNA interaction by expressing p53-binding 3’UTR sequences of PAI-1 mRNA likewise suppressed CS-induced PAI-1 and AEC apoptosis and restored EAR1 expression. Consistent with PCSE-induced lung injury, IAV infection increased p53, PAI-1 and apoptosis in AECs in association with pulmonary inflammation. Lung inflammation induced by PCSE was worsened by subsequent exposure to IAV. Mice lacking PAI-1 that were exposed to IAV showed minimal viral burden based on M2 antigen and hemagglutination analyses, whereas transgenic mice that overexpress PAI-1 without PCSE showed increased M2 antigen and inflammation after IAV infection. These observations indicate that increased PAI-1 expression promotes AEC apoptosis and exacerbates lung inflammation induced by IAV following PCSE.  相似文献   

14.
目的本实验旨在观察不同品系小鼠感染甲型流感病毒后肺组织内血栓形成的情况。方法使用H1N1病毒A/California/7/2009(CA7)株和H3N2病毒A/Brisbane/10/07株,对BALB/C小鼠、Scid小鼠、NOD/LTJ小鼠、BALB/C-nu小鼠、NOD-Scid小鼠和icosl-KO小鼠经乙醚麻醉后进行滴鼻攻毒。检测小鼠感染后肺组织病毒拷贝数并观察肺组织病理学改变。结果 H1N1和H3N2滴鼻攻毒的各组小鼠均染毒,病理表现为程度略有差异的间质性肺炎。13只H1N1病毒感染小鼠和6只H3N2感染小鼠在肺组织中观察到多个小血管内有血栓形成,血栓成分主要为纤维素和血小板。结论各品系小鼠感染H1N1和H3N2流感病毒后均可能出现肺组织内血栓形成。  相似文献   

15.
Reactive oxygen species (ROS) and nitric oxide (NO) are major pathogenic molecules produced during viral lung infections, including influenza. While fluoroquinolones are widely used as antimicrobial agents for treating a variety of bacterial infections, including secondary infections associated with the influenza virus, it has been reported that they also function as anti-oxidants against ROS and as a NO regulator. Therefore, we hypothesized that levofloxacin (LVFX), one of the most frequently used fluoroquinolone derivatives, may attenuate pulmonary injuries associated with influenza virus infections by inhibiting the production of ROS species such as hydroxyl radicals and neutrophil-derived NO that is produced during an influenza viral infection. The therapeutic impact of LVFX was examined in a PR8 (H1N1) influenza virus-induced lung injury mouse model. ESR spin-trapping experiments indicated that LVFX showed scavenging activity against neutrophil-derived hydroxyl radicals. LVFX markedly improved the survival rate of mice that were infected with the influenza virus in a dose-dependent manner. In addition, the LVFX treatment resulted in a dose-dependent decrease in the level of 8-hydroxy-2’-deoxyguanosine (a marker of oxidative stress) and nitrotyrosine (a nitrative marker) in the lungs of virus-infected mice, and the nitrite/nitrate ratio (NO metabolites) and IFN-γ in BALF. These results indicate that LVFX may be of substantial benefit in the treatment of various acute inflammatory disorders such as influenza virus-induced pneumonia, by inhibiting inflammatory cell responses and suppressing the overproduction of NO in the lungs.  相似文献   

16.
Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung microenvironments in order to regulate tolerance or immunity to inhaled antigens and pathogens. Influenza A virus (IAV) poses a serious threat of long-term disruption to this balance through its potent pro-inflammatory activities. In this study, we have used a BALB/c mouse model of A/PR8/34 H1N1 Influenza Type A Virus infection to examine the effects of IAV on respiratory tissue DC subsets during the recovery phase following clearance of the virus. In adult mice, we found differences in the kinetics and activation states of DC residing in the airway mucosa (AMDC) compared to those in the parenchymal lung (PLDC) compartments. A significant depletion in the percentage of AMDC was observed at day 4 post-infection that was associated with a change in steady-state CD11b+ and CD11b AMDC subset frequencies and significantly elevated CD40 and CD80 expression and that returned to baseline by day 14 post-infection. In contrast, percentages and total numbers of PLDC were significantly elevated at day 14 and remained so until day 21 post-infection. Accompanying this was a change in CD11b+and CD11b PLDC subset frequencies and significant increase in CD40 and CD80 expression at these time points. Furthermore, mice infected with IAV at 4 weeks of age showed a significant increase in total numbers of PLDC, and increased CD40 expression on both AMDC and PLDC, when analysed as adults 35 days later. These data suggest that the rate of recovery of DC populations following IAV infection differs in the mucosal and parenchymal compartments of the lung and that DC populations can remain disrupted and activated for a prolonged period following viral clearance, into adulthood if infection occurred early in life.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号