首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of charged lipids in the cell membrane constitutes the background for the interaction with numerous membrane proteins. As a result, the valence of the lipids plays an important role concerning their lateral organization in the membrane and therefore the very manner of this interaction. This present study examines this aspect, particularly regarding to the interaction of the anionic lipid DPPS with the highly basic charged effector domain of the MARCKS protein, examined in monolayer model systems. Film balance, fluorescence microscopy and X-ray reflection/diffraction measurements were used to study the behavior of DPPS in a mixture with DPPC for its dependance on the presence of MARCKS (151-175). In the mixed monolayer, both lipids are completely miscible therefore DPPS is incorporated in the ordered crystalline DPPC domains as well. The interaction of MARCKS peptide with the mixed monolayer leads to the formation of lipid/peptide clusters causing an elongation of the serine group of the DPPS up to 7? in direction to surface normal into the subphase. The large cationic charge of the peptide pulls out the serine group of the interface which simultaneously causes an elongation of the phosphodiester group of the lipid fraction too. The obtained results were used to compare the interaction of MARCKS peptide with the polyvalent PIP(2) in mixed monolayers. On this way we surprisingly find out, that the relative small charge difference of the anionic lipids causes a significant different interaction with MARCKS (151-175). The lateral arrangement of the anionic lipids depends on their charge values and determines the diffusion of the electrostatic binding clusters within the membrane.  相似文献   

2.
Valiyaveetil FI  Zhou Y  MacKinnon R 《Biochemistry》2002,41(35):10771-10777
Lipid molecules surround an ion channel in its native environment of cellular membranes. The importance of the lipid bilayer and the role of lipid protein interactions in ion channel structure and function are not well understood. Here we demonstrate that the bacterial potassium channel KcsA binds a negatively charged lipid molecule. We have defined the potential binding site of the lipid molecule on KcsA by X-ray crystallographic analysis of a complex of KcsA with a monoclonal antibody Fab fragment. We also demonstrate that lipids are required for the in vitro refolding of the KcsA tetramer from the unfolded monomeric state. The correct refolding of the KcsA tetramer requires lipids, but it is not dependent on negatively charged lipids as refolding takes place in the absence of such lipids. We confirm that the presence of negatively charged lipids is required for ion conduction through the KcsA potassium channel, suggesting that the lipid bound to KcsA is important for ion channel function.  相似文献   

3.
The interaction of the natural mucopolysaccharide hyaluronic acid with different lipids, present in the natural membranes, was studied at the lipid/water interface using thermodynamic methods and X-ray diffraction. The results show that this biopolymer modifies the properties and the structure of the lipid monolayer. The two-dimensional crystalline lattice and domain structure of the charged octadecylamine monolayer are strongly disturbed by the hyaluronic acid, the monolayer compressibility increases and the monolayer collapse pressure drops down. In addition, the presence of charged lipid interfaces influences the structural organisation of the hyaluronic acid at the membrane/water interfaces. The impacts of these results on the structural organisation at the membrane interface are discussed.  相似文献   

4.
The interaction of the natural mucopolysaccharide hyaluronic acid with different lipids, present in the natural membranes, was studied at the lipid/water interface using thermodynamic methods and X-ray diffraction. The results show that this biopolymer modifies the properties and the structure of the lipid monolayer. The two-dimensional crystalline lattice and domain structure of the charged octadecylamine monolayer are strongly disturbed by the hyaluronic acid, the monolayer compressibility increases and the monolayer collapse pressure drops down. In addition, the presence of charged lipid interfaces influences the structural organisation of the hyaluronic acid at the membrane/water interfaces. The impacts of these results on the structural organisation at the membrane interface are discussed.  相似文献   

5.
Different aspects of the interaction of apocytochrome c and model membranes composed of negatively charged lipids, were studied in order to get insight into the nature of this interaction. The effect of the protein on the lipid packing properties are revealed by DSC, ESR and monolayer techniques. These experiments clearly demonstrate that upon electrostatic interaction with the negatively charged phospholipids, apocytochrome c is able to penetrate into the hydrophobic region of the model membrane. In the case of 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, this results in a perturbation of 160 lipid molecules per apocytochrome c molecule. Most likely, apocytochrome c disrupts the formation of the gel phase and restricts the lipid chain motion above the gel to liquid-crystalline phase transition. Tryptophan fluorescence measurements confirm that at least a part of the protein penetrates into the bilayer, and suggest that after this penetration, the tryptophan (residue no. 59) is located in the glycerol backbone region of the phospholipids. Although the secondary structure of apocytochrome c is predicted to contain about 35% of alpha-helical structure, the CD pattern of an aqueous solution of the protein is featureless. However, negatively charged lipids are able to express this alpha-helical potency in the apocytochrome c, which might be important for the insertion of the protein into lipid membranes.  相似文献   

6.
For the lack of effective antibiotics towards antibiotic resisting bacteria, it is required to discover new antibiotics and to understand their antimicrobial mechanism. Violacein is a violet pigment found in several gram-negative bacteria possessing antimicrobial properties to gram-positive bacteria. This present article investigates the insertion ability of this molecule into a model membrane composed of zwitterionic phospholipids. Thermodynamic characterization of lipid monolayers in the presence of violacein was carried out using a single lipid layer formed at air-water interface. The molecule inserts into the layer altering the area occupied by each lipid and the in-plane compressibility of the film. This insertion increases with the hydrophobic chain length of the lipid. The perturbed self-assembly of lipids in a bilayer is quantified using a lipid multilayer system applying the X-ray reflectivity technique. The electron density profile from the reflectivity data shows that the molecule inserts into the fluid phase creating a relatively ordered chain conformation. Further, the insertion into the gel phase is observed to increase with the increased thickness of the hydrophobic core of a bilayer.  相似文献   

7.
The probable arrangement of the bacteriorhodopsin molecules in the purple membrane of Halobacterium halobium is in clusters of three, with a 3-fold axis at the centre of each cluster; the axis is at right angles to the plane of the membrane. The proposed arrangement and the results of model calculations together indicate that each protein molecule spans the entire thickness of the membrane. An earlier proposal for the structure had the protein molecules in two layers, and it was symmetric in projection onto the profile-axis. This model is now rejected since it would be difficult to account for the recently discovered function of pumping protons. There remains a discrepancy in that the calculated number of protein molecules in the unit-cell is 3.4 compared to the three expected.The X-ray diffraction patterns from dispersions of the lipids extracted from the red and purple membranes of H. halobium are described.Model calculations are reported, which are based on the bilayer profile calculated for the extracted lipids and on two simple profiles for the protein. The calculations favour a structure for the purple membrane having the lipid molecules in two layers, as in a bilayer, although there may be more of the lipid on one side of the membrane than on the other. Assuming bilayer structure, the diffraction nearest the centre of the oriented pattern suggests that the lipid molecules may be located mainly in a few discrete regions, roughly 20 Å across, between the protein molecules. An uninterrupted monolayer of the lipid on one surface of a sheet of the protein molecules gives poor agreement with the observed profile-diffraction.The X-ray diffraction pattern from the oriented membranes suggested α-helix in the bacteriorhodopsin, and this has been confirmed by recording a 1.5 Å-reflection oriented on the profile-axis. There appear to be at least two segments of α-helix, which are somewhat inclined to one another, and the two may be packed together. Prominent diffraction on the in-plane axis near 10 Å is consistent with the segments lying more or less perpendicular to the plane of the membrane.  相似文献   

8.
Molecular dynamics computer simulations have been performed to investigate dynamical and structural properties of a lidocaine local anesthetic. Both charged and uncharged forms of the lidocaine molecule were investigated. Properties such as membrane area per lipid, diffusion, mass density, bilayer penetration and order parameters have been examined. An analysis of the lidocaine interaction with the lipid surrounding according to a simple mean field theory has also been performed. Almost all examined properties were found to depend on which of the two forms of lidocaine, charged or uncharged, is studied. The overall picture is a rather static behavior determined by the lipids for the charged molecules and more mobile situation of the uncharged form with higher diffusion and lower orientational and positional order.  相似文献   

9.
With aid of optical methods, the presence of the paired correlations of pi-electrons has been revealed in phospholipids as well as in triacylglyceride molecules. Used for analysis were lipid extracts of individual representatives of animals of various evolutionary levels--cartilaginous and bony fish and mammals differing by the content of unsaturated fatty acids in lipids. It has been established that the necessary condition for formation of electron pairs is interaction of lipid molecules with each other. An opinion is put forward that in the liquid crystal structure of the membrane monolayer there are two zones able to form electron pairs--the zone of location of ester bonds and the zone in the region of double bonds. Besides, the paired correlation in the phospholipid molecule electron system is accompanied by the absence of electric resistance of the membrane monolayer, which provides the monolayer superconductivity at low rates of movement of the "electron fluid". It is to be noted that the very fact of the presence of the electron pair implies transfer of energy by small portions, which does not allow excitation of individual phospholipid molecules in the monolayer and promotes stability of the native membrane. Our data agree with the known statements of A. Pulman and B. Pulman that the life dynamicity is determined by dynamicity of the electron cloud in coupled or partially coupled systems.  相似文献   

10.
With aid of optical methods, the presence of the paired correlations of π-electrons has been revealed in phospholipids as well as in triacylglyceride molecules. Used for analysis were lipid extracts of individual representatives of animals of various evolutionary levels—cartilaginous and bony fish and mammals differing by the content of unsaturated fatty acids in lipids. It has been established that the necessary condition for formation of electron pairs is interaction of lipid molecules with each other. An opinion is put forward that in the liquid crystal structure of the membrane monolayer there are two zones able to form electron pairs—the zone of location of ester bonds and the zone in the region of double bonds. Besides, the paired correlation in the phospholipid molecule electron system is accompanied by the absence of electric resistance of the membrane monolayer, which provides the monolayer superconductivity at low rates of movements of the “electron fluid.” It is to be noted that the very fact of the presence of the electron pair implies transfer of energy by small portions, which does not allow excitation of individual phospholipid molecules in the monolayer and promotes stability of the native membrane. Our data agree with the known statement of A. Pulman and B. Pulman that the life dynamicity is determined by dynamicity of the electron cloud in coupled or partially coupled systems.  相似文献   

11.
An equilibrium transmembrane asymmetry in charged lipids is shown to arise as a result of oriented, bipolar proteins in the membrane. The basic interaction giving rise to the asymmetry is between a lipid molecule and a transbilayer potential generated by the asymmetric charge distribution in the protein. Thus, a protein can generate a lipid asymmetry without a direct binding interaction between lipid and protein. The generation of an asymmetry in charged lipid by this mechanism can also lead to a concomitant asymmetry in neutral lipids if deviations from ideality in the lipid mixture are taken into account. It is shown that regular solution theory applied to the lipid phase predicts an asymmetry in all components of a ternary mixture as long as one component is electrostatically oriented according to the mechanism mentioned above. The resulting asymmetry is not strongly salt dependent. The mechanism quantitatively accounts for the experimentally determined phospholipid asymmetry in the rod outer segment disc membrane of the vertebrate photoreceptor.  相似文献   

12.
The desolvation of lipid molecules in a complex of the enzyme human synovial phospholipase A2 with a lipid membrane is investigated as a mechanism that enhances the overall activity of the enzyme. For this purpose the interaction of the enzyme phospholipase A2 with a dilauryl-phosphatityl-ethanolamin (DLPE) membrane monolayer surface has been studied by means of molecular dynamics simulations. Two enzyme-membrane complexes, a loose and a tight complex, are considered. For comparison, simulations are also carried out for the enzyme in aqueous solution. The conformation, dynamics, and energetics of the three systems are compared, and the interactions between the protein and lipid molecules are analyzed. Free energies of solvation are calculated for the lipid molecules in the enzyme–membrane interface. Along with the calculated dielectric susceptibility at this interface, the results show the desolvation of lipids in a tightly bound, but not in a loosely bound protein-membrane complex. The desolvated lipids are found to interact mainly with hydrophobic protein residues, Including Leu-2, Val-3, Ala-18, Leu-19, Phe-24, Val-31, and Phe-70. The results also explain why the turnover rate of phospholipase A2 complexed to a membrane is enhanced after a critical amount of negatively charged reaction product is accumulated. © 1996 Wiley-Liss, Inc.  相似文献   

13.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

14.
Cationic liposomal lipids: from gene carriers to cell signaling   总被引:2,自引:0,他引:2  
Cationic lipids are positively charged amphiphilic molecules which, for most of them, form positively charged liposomes, sometimes in combination with a neutral helper lipid. Such liposomes are mainly used as efficient DNA, RNA or protein carriers for gene therapy or immunization trials. Over the past decade, significant progress has been made in the understanding of the cellular pathways and mechanisms involved in lipoplex-mediated gene transfection but the interaction of cationic lipids with cell components and the consequences of such an interaction on cell physiology remains poorly described. The data reported in the present review provide evidence that cationic lipids are not just carriers for molecular delivery into cells but do modify cellular pathways and stimulate immune or anti-inflammatory responses. Considering the wide number of cationic lipids currently available and the variety of cellular components that could be involved, it is likely that only a few cationic lipid-dependent functions have been identified so far.  相似文献   

15.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

16.
The 53-kDa insulin receptor substrate protein (IRSp53) organizes the actin cytoskeleton in response to stimulation of small GTPases, promoting the formation of cell protrusions such as filopodia and lamellipodia. IMD is the N-terminal 250 amino acid domain (IRSp53/MIM Homology Domain) of IRSp53 (also called I-BAR), which can bind to negatively charged lipid molecules. Overexpression of IMD induces filopodia formation in cells and purified IMD assembles finger-like protrusions in reconstituted lipid membranes. IMD was shown by several groups to bundle actin filaments, but other groups showed that it also binds to membranes. IMD binds to negatively charged lipid molecules with preference to clusters of PI(4,5)P2. Here, we performed a range of different in vitro fluorescence experiments to determine the binding properties of the IMD to phospholipids. We used different constructs of large unilamellar vesicles (LUVETs), containing neutral or negatively charged phospholipids. We found that IMD has a stronger binding interaction with negatively charged PI(4,5)P2 or PS lipids than PS/PC or neutral PC lipids. The equilibrium dissociation constant for the IMD–lipid interaction falls into the 78–170 μM range for all the lipids tested. The solvent accessibility of the fluorescence labels on the IMD during its binding to lipids is also reduced as the lipids become more negatively charged. Actin affects the IMD–lipid interaction, depending on its polymerization state. Monomeric actin partially disrupts the binding, while filamentous actin can further stabilize the IMD–lipid interaction.  相似文献   

17.
Planar asymmetric bilayer membranes, formed by apposing a monolayer of the neutral lipid glyceroldioleate (GDO) with one of the negatively charged lipid oleyl acid phosphate (OAP), were used to measure the rate of transmembrane OAP migration. The assay for this lipid flip-flop was the interaction of Ca2+ ions with negatively charged lipids which causes membranes to break: when Ca2+ is added to the compartment limited initially by the neutral lipid, flip-flop of the charged lipid eventually results in membrane breakdown. At 22 ± 2°C, in the absence of an externally applied electric field, an upper limit to the half time of OAP flip-flop was measured as 18.7 h, with a tentative lower limit of 14.4 h.  相似文献   

18.
Interaction of antimicrobial peptides with lipopolysaccharides   总被引:3,自引:0,他引:3  
Ding L  Yang L  Weiss TM  Waring AJ  Lehrer RI  Huang HW 《Biochemistry》2003,42(42):12251-12259
We study the interaction of antimicrobial peptides with lipopolysaccharide (LPS) bilayers to understand how antimicrobial peptides interact with the LPS monolayer on the outer membrane of Gram-negative bacteria. LPS in water spontaneously forms a multilamellar structure composed of symmetric bilayers. We performed X-ray lamellar diffraction and wide-angle in-plane scattering to study the physical characteristics of LPS multilayers. The multilayer alignment of LPS is comparable to phospholipids. Thus, it is suitable for the application of oriented circular dichroism (OCD) to study the state of peptides in LPS bilayers. At high hydration levels, the chain melting temperature in multilamella detected by X-ray diffraction is the same as that of LPS aqueous dispersions, as measured by calorimetry. LPS has a strong CD, but with a careful subtraction of the lipid background, the OCD of peptides in LPS is measurable. The method was tested successfully with melittin. It was then applied to two representative antimicrobial peptides, magainin and protegrin. At peptide concentrations comparable to the physiological conditions, both peptides penetrate transmembrane in LPS bilayers. The results imply that antimicrobial peptides readily penetrate the LPS monolayer of the outer membrane.  相似文献   

19.
The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase separating from the lipids, forces the lipid molecules to pack tightly and restore the barrier function of the membrane. Upon compression to bilayer equivalent pressure, P188 is squeezed out from the lipid monolayer, allowing a graceful exit of P188 when the membrane integrity is restored.  相似文献   

20.
1. The reflection coefficient for the permeation of thiourea through bilayers of phosphatidylcholine is a function of the fatty-acid composition of the lipid molecules. By means of these reflection coefficients an index for membrane fluidity has been given to each of those lipids, relative to that of egg phosphatidylcholine. 2. The maximum number of water molecules that can copermeate with each molecule of solute by means of solute-solvent interaction is a function of the packing of the lipid molecules in the bilayer. This parameter has been used in this paper for characterizing the fluidity of cholesterol-containing membranes and for membranes with their lipids in the gel state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号