首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

2.
A comprehensive and critical review of all available literature on associations between Australian lycaenid butterflies and ants was undertaken to establish an accurate database of the partners involved. Collections and observations of lycaenids and ants were used to augment this review, resulting in a significant number of newly documented association (and non-association) records. Twenty published records considered to be erroneous or doubtful are noted, with justifications given for their deletion from the association database. In total, 265 different associations between lycaenids and ants, plus 65 non-attendance records are documented for Australia. Nearly 80% of the lycaenid species in Australia, for which the early stages are known, are recorded associating with ants and half of these are obligately ant-associated. Patterns of association are examined from the perspective of both lycaenids and ants, with a focus on ant systematics and ecology. Lycaenids are recorded with five ant subfamilies, including the first record of an association with the Pseudomyrmecinae. The Dolichoderinae, and to some extent the Formicinae, have a disproportionately high percentage of genera that associate with lycaenid butterflies. All ant species that tend lycaenids spend at least some portion of their time foraging on vegetation to collect plant and insect nectar. There is a robust relationship between the competitive status of ants within a community, and their frequency and degree of association with lycaenids. Obligate ant-association is accompanied by a high degree of specificity for ant partner, but two notable exceptions, Ogyris aenone and O. amaryllis are discussed. Facultative myrmecophiles tend to associate with a broad range of ants, although interactions with ecologically dominant ants are less frequent than might be expected based on the abundance of dominant ant species in Australian communities.  相似文献   

3.
The rove beetle genus Drusilla includes some myrmecophilous species. The Japanese species Drusilla sparsa (Sharp, 1874) has been regarded as a non‐myrmecophilous beetle. In Kagawa Prefecture, Shikoku Island, western Japan, however, we often observed that D. sparsa adults were walking in the vicinity of foraging workers of the myrmicine ant Crematogaster osakensis Forel, 1990. The body color of the beetle is similar to C. osakensis as in other myrmecophilous beetles found near the trails of the host ants. To examine whether D. sparsa is myrmecophilous, we investigated the distribution of D. sparsa and C. osakensis in the field, as well as their behavior including prey preference of the beetle in the laboratory. Drusilla sparsa beetles were collected only in sites where C. osakensis ants occurred. When the beetles encountered the ant workers, they bent the abdominal tip toward the ants. The ants licked the abdominal tip, and then the beetles usually walked away. Such behavioral reaction of the ants was not observed when the beetles encountered workers of the formicine ant Nylanderia flavipes (Smith, 1874) that continuously attacked the beetles. Drusilla sparsa preferred to feed on dead workers of C. osakensis even when other ants were available as food, indicating that D. sparsa is a myrmecophilous species associated with C. osakensis. Crematogaster osakensis was frequently found in the stomach in the ant predator, the Japanese treefrog Hyla japonica Günther, 1859. Thus, the significance of body color similarity between the host ants and beetles is not a case of Batesian mimicry.  相似文献   

4.
Alien ants are among the most deleterious predatory invertebrates causing havoc to native biodiversity including negative effects on other ant species, other invertebrates and vertebrates, particularly birds and lizards, ecosystem function, economy, animal and human health. The patterns of alien ant invasions and reasons for their success are among the most intensively studied facets of invasion ecology, with feedback to a general understanding of ant ecology. Alien ant management can intervene at any step during the invasion process, with action for preventive measures being the most efficient. Beside standard chemical treatments, new methods and technologies for mitigation and control of ant invasions are mostly in a trial stage. A brief outlook on the most promising offensive lines is given with particular attention paid to Wolbachia-symbiosis. Ultimately, an integrative alien species management strategy is imperative to cope with accelerating biodiversity losses due to biological invasions.  相似文献   

5.
This study investigated ant seed removal of Piper sancti-felicis, an early successional Neotropical shrub. Neotropical Piper are a classic example of bat-dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the genera Aphaenogaster, Ectatomma, Paratrechina, Pheidole, Trachymyrmex, and Wasmannia recruiting to and harvesting P. sancti-felicis seeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations in P. sancti-felicis fruits, affected foraging behavior in one genus of potential ant dispersers, Ectatomma. We found no effects of alkenylphenols on recruitment of Ectatomma to fruits, and thus, these compounds are unlikely to explain differences in ant recruitment among fruits of different maturity. Considering that P. sancti-felicis seeds have no apparent adaptations for ant dispersal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers of P. sancti-felicis and suggests that other non-myrmecochorous, vertebrate-dispersed plants may similarly benefit from the recruitment to fruit by ants.  相似文献   

6.
Abstract

Impacts of highly invasive ants in new ecosystems are well documented, but many more ant species are establishing in new ranges for which there is little or no information. We studied the effects of the recently discovered Australian ant, Monomorium sydneyense Forel, on the ant community of Sulphur Point in Tauranga, New Zealand. At the community scale, the species composition in invaded areas was significantly different from that in areas free of M. sydneyense. However, no single ant species was significantly more or less abundant in the presence of M. sydneyense. Some resident ant species categorised in the same functional group as the invader appeared to be scarcer when sympatric with M. sydneyense, but the local abundances of these species were always spatially variable, so the effects were not statistically significant Patchy distribution of M. sydneyense, and other aspects of its behaviour, such as poor foraging abilities and a lack of unicoloniality (where there is little or no aggression between conspecific ants from spatially separate nests), appear to allow resident ant species to coexist with M. sydneyense at Sulphur Point.  相似文献   

7.
Although it is common for ant surveys to uncover previously uncollected species, a recent study of subterranean ants in Amazonian Ecuador has indicated that an entire ant fauna may remain largely undiscovered. Here we report on the first systematic investigation of subterranean ants in northern Australia, in order to assess the extent to which the high abundance and diversity of subterranean ants in Amazonia is apparent in tropical Australia. We use a novel sampling technique that combines elements of an attractant bait and a pitfall trap, and allows many traps to be deployed simultaneously. Our main study was conducted at three closely approximated sites in Darwin, where the local ant fauna has been intensively surveyed using conventional (above-ground) sampling techniques. The 720 traps deployed resulted in 421 species records, representing 29 species from 17 genera. Sixteen of these species have cryptobiotic morphology, with four recorded here for the first time. Remarkably, one of these four (a blind species of Solenopsis) was the second most frequently caught species in subterranean traps, with 70 records. Ant abundance, species richness and composition varied markedly between sites, despite site similarity in soils and vegetation. Total ant records were greater in the middle compared with start of the wet season, declined with depth, and were greater after 4 days than one. Sampling at six sites in the Mitchell Falls area of the northern Kimberley region, 1,200 km southwest of Darwin, also revealed several cryptobiotic species new to science, including a new genus record (Pseudolasius) for Western Australia. Our underground sampling has therefore revealed an abundant and diverse subterranean ant fauna in northern Australia, containing many cryptobiotic species not previously collected. We use our results to provide methodological guidelines for most effectively sampling this fauna. Combined with the Amazonian study, our findings indicate that a specialist subterranean ant fauna, including numerous species remaining to be discovered, might be a feature of tropical landscapes throughout the world.  相似文献   

8.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

9.
Early experience is known to influence brood care behavior and to induce nesting preferences of several ant species. Scanty information is available with respect to imprinting effects on host selection of dulotic ants. In this paper we investigate host choice behavior of workers of the slave-making ant, Chalepoxenus muellerianus. As in a corresponding paper (Schumann & Buschinger 1994) on host specificity of C. muellerianus young queens during colony foundation, we demonstrate that a blend of innate factors and effects of early experience also influences host species selection of slave-raiding workers.  相似文献   

10.
Some phytophagous insects gain defense from natural enemies by associating with otherwise potentially harmful top predators. Many lycaenid butterfly caterpillars are involved in such interactions with ants: larvae provide carbohydrate rewards from the dorsal nectary organ (DNO) to associated ants in return for protection from natural enemies. The stability of these interactions involves signals that identify the lycaenid caterpillar as a mutualist. However, larvae of some lycaenid species, such as Lycaena xanthoides, are found in close association with ants but do not possess the reward producing DNO. Evaluating the relationship in a phylogenetic framework, we show that the association between L. xanthoides and ants likely evolved from a non-ant-associated ancestor. Behavioral trials also show that L. xanthoides larvae are capable of influencing ant behavior to increase ant tending when faced with a simulated predator attack, without providing DNO-derived rewards to ant associates. These results demonstrate that the DNO is not necessary to maintain associations between lycaenid larvae and ants. Third-party interactions may affect the evolution of mutualisms and consideration of underlying evolutionary history is necessary to understand contemporary species associations.  相似文献   

11.
Abstract The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that has been associated with losses of native ant species and other invertebrates from its introduced range. To date, various abiotic conditions have been associated with limitations to the spread of Argentine ants, however, competitive interactions with native ant fauna may also affect the spread of Argentine ants. Here, we experimentally manipulated colony sizes of Argentine ants in the laboratory to assess whether Argentine ants were able to survive and compete for resources with a widespread, dominant native ant, Iridomyrmexrufoniger’. The results showed that over 24 h, the proportions of Argentine ants that were alive, at baits, and at sugar water decreased significantly in the presence of Iridomyrmex. In addition, Argentine ant mortality increased over time, however, the proportion of the colony that was dead decreased with the largest colony size. Argentine ants were only able to overcome Iridomyrmex when their colony sizes were 5–10 times greater than those of the native ants. We also conducted trials in which colonies of Argentine ants of varying sizes were introduced to artificial baits occupied by Iridomyrmex in the field. The results showed that larger Argentine ant colonies significantly affected the foraging success of Iridomyrmex after the initial introduction (5 min). However, over the first 20 min, when the Argentine ants were present at the baits, and over the entire 50 min experimental period, the numbers of Iridomyrmex at baits did not differ significantly with the size of the Argentine ant colony. This is the first experimental study to investigate the role of colony size in the invasion biology of Argentine ants in Australia, and the results suggest that Iridomyrmex may reduce the spread of Argentine ants, and that Argentine ants may need to attain large colony sizes in order to survive in the presence of Iridomyrmex. We address the implications of these findings for the invasion success of Argentine ants in Australia, and discuss the ability of Argentine ants to attain large colony sizes in introduced areas.  相似文献   

12.
  • Although the production of extranuptial nectar is a common strategy of indirect defence against herbivores among tropical plants, the presence of extranuptial nectaries in reproductive structures is rare, especially in ant‐plants. This is because the presence of ants in reproductive organs can generate conflicts between the partners, as ants can inhibit the activity of pollinators or even castrate their host plants. Here we evaluate the hypothesis that the ant‐plant Miconia tococa produces nectar in its petals which attracts ants and affects fruit set.
  • Floral buds were analysed using anatomical and histochemical techniques. The frequency and behaviour of floral visitors were recorded in field observations. Finally, an ant exclusion experiment was conducted to evaluate the effect of ant presence on fruit production.
  • The petals of M. tococa have a secretory epidermis that produces sugary compounds. Nectar production occurred during the floral bud stage and attracted 17 species of non‐obligate ants (i.e. have a facultative association with ant‐plants). Ants foraged only on floral buds, and thus did not affect the activity of pollinators in the neighbouring open flowers. The presence of ants in the inflorescences increased fruit production by 15%.
  • To our knowledge, the production of extranuptial nectar in the reproductive structures of a myrmecophyte is very rare, with few records in the literature. Although studies show conflicts between the partners in the ant–plant interaction, ants that forage on M. tococa floral buds protect the plant against floral herbivores without affecting bee pollination.
  相似文献   

13.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

14.
We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus‐growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly developed primers and earlier published primers that were developed for fungus‐growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus‐growing ants, are now available for studying the population genetics and colony kin‐structure of these ants.  相似文献   

15.
Army ants are among the top arthropod predators and considered keystone species in tropical ecosystems. During daily mass raids with many thousand workers, army ants hunt live prey, likely exerting strong top‐down control on prey species. Many tropical sites exhibit a high army ant species diversity (>20 species), suggesting that sympatric species partition the available prey niches. However, whether and to what extent this is achieved has not been intensively studied yet. We therefore conducted a large‐scale diet survey of a community of surface‐raiding army ants at La Selva Biological Station in Costa Rica. We systematically collected 3,262 prey items from eleven army ant species (genera Eciton, Nomamyrmex and Neivamyrmex). Prey items were classified as ant prey or non‐ant prey. The prey nearly exclusively consisted of other ants (98%), and most booty was ant brood (87%). Using morphological characters and DNA barcoding, we identified a total of 1,103 ant prey specimens to the species level. One hundred twenty‐nine ant species were detected among the army ant prey, representing about 30% of the known local ant diversity. Using weighted bipartite network analyses, we show that prey specialization in army ants is unexpectedly high and prey niche overlap very small. Besides food niche differentiation, we uncovered a spatiotemporal niche differentiation in army ant raid activity. We discuss competition‐driven multidimensional niche differentiation and predator–prey arms races as possible mechanisms underlying prey specialization in army ants. By combining systematic prey sampling with species‐level prey identification and network analyses, our integrative approach can guide future research by portraying how predator–prey interactions in complex communities can be reliably studied, even in cases where morphological prey identification is infeasible.  相似文献   

16.

—In 2015–2017, attendance of 15 invasive and 22 native species of herbaceous plants by ants was studied in 6 habitats in the environs of Kyiv (Ukraine). Altogether, 14 ant species were found, of which 12 were recorded on invasive plants and 9 on native plants; 8 aphid species were found on 8 invasive plant species. Five invasive plant species (Asclepias syriaca, Heracleum mantegazzianum, Oenothera biennis, Onopordum acanthium, and Amaranthus retroflexus) were found to be attractive to ants, with over a half of all the ant workers in all the habitats being recorded on them; besides, numerous colonies of 7 aphid species were also found on these plants. These invasive plants positively affect the structure of ant assemblages since the aphid colonies provide ants with food resource. The remaining 10 invasive plant species, including 5 transformer species, were poorly visited by ants and housed no aphid colonies, with the exception of Conyza canadensis on which the non-myrmecophilous aphid Uroleucon erigeronense (Thomas, 1878) was found. Two thirds of invasive plant species had a negative effect on the structure of ant assemblages because they replaced the native plants and thus reduced the trophic resources of aphids.

  相似文献   

17.
Abstract 1. We examined the relative effects of the invasive Argentine ant, Linepithema humile, and a common native ant, Prenolepis imparis, on the community of herbivorous insects occurring on willow trees, Salix lasiolepis in Northern California, U.S.A. 2. Using paired control and treatment branches from which we excluded ants and other non‐volant predators, we found that effects of Argentine ants on the herbivore community were generally similar to those of P. imparis. Argentine ants and P. imparis suppressed the damage by skeletonising insects by 50%, but had little effect on most other external‐feeding or internal‐feeding guilds. 3. The abundance of aphids was 100% greater in the presence of Argentine ants, but there was no effect on aphid numbers in the presence of P. imparis. Late season aphid numbers were substantially higher in the presence of Argentine ants, but not P. imparis. 4. The effects of Argentine ants on skeletonising insects and aphids combined with the overwhelming abundance of Argentine ant workers, suggests that they may have substantial, but often overlooked, effects on the herbivore communities on other plant species in or near riparian habitats in which they invade.  相似文献   

18.
Studies on the responses of ant–plant interactions to land‐use change have mainly focused on tropical habitats, usually without considering the impacts on the structure of interaction networks. Here we show that land‐use modifies the structure of the ant–plant interaction networks in a temperate habitat. Ant–plant interactions and plant diversity were recorded in an oak forest and agricultural land in central Mexico. We registered five ant species in the oak forest, and four ant species in the agricultural land. Plant diversity was higher in the agricultural land than in the oak forest. In the ant–plant networks of both sites, our results showed a higher dependence of ants on the plants on which they feed than vice versa, and the ants Formica spp. and the plants Barkleyanthus salicifolius were the species with the most strength and greatest influence in the network structure. The ant–plant network in the oak forest showed a nested structure. However, the network at the agricultural land site showed non‐nestedness; the identity of both ants and plants with the highest values of specialization was different and the number of ant species in the network was decreased, but the number of plant species with which they interacted significantly increased. Both ant–plant networks were equally tolerant to simulated extinction of individual species. We conclude that temperate forest ant–plant networks can be inherently fragile and susceptible to the effects of agricultural land‐use change, not on the number of interacting species but on their identity.  相似文献   

19.
This paper describes the myrmecochory system of Turnera ulmifolia in a coastal sand dune matorral in Mexico. Turnera ulmifolia has elaiosome‐bearing seeds and extrafloral nectaries (EFNs). In ten quadrants (4 × 15 m) ant–seed interaction was monitored, and an interaction intensity index calculated and correlated with the number of seedlings. Seed removal rates by ants were surveyed every 2 h for 24 h, the ants being observed both on and beneath the plants. The role of the elaiosome in seed removal was evaluated by offering seeds with and without elaiosomes, and elaiosomes only. Finally, the effect of ant manipulation in seed germination was evaluated. There were 25 ant species associated with seeds and/or EFNs, the most frequently recorded being Monomorium cyaneum and Forelius analis. There was a positive correlation between the intensity index and seedling number per quadrant. There was significantly higher mean seed removal during the day than during the night (19.3% and 12.3%, respectively), and from beneath than on the plant (21.9% and 9.5%, respectively). The preference for elaiosomes only was also greater during the diurnal period, and when gathered on, rather than beneath, the plant. Seed manipulation by F. analis enhanced germination by T. ulmifolia. Seed removal, dispersal distances, seed predation and germination were largely determined by ant behaviour. The presence of EFNs may be influencing seed removal on the plant by attracting a specific assemblage of omnivorous ants. Among such assemblages associated with T. ulmifolia we encountered a variety of behaviours, with ant species either good at defending plants but bad at dispersing seeds, or vice versa. We discuss the way in which these two rewards, and the processes involved (defence and dispersion), could have interacted with each other and evolved. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 67–77.  相似文献   

20.
《法国昆虫学会纪事》2012,48(6):459-464
Summary

Carbohydrate food is of high importance for survival of ant colonies. Ants are known to use sugary excretions (honeydew) of various insects, nectar of floral and extrafloral nectaries, and even sap of some trees. However, the ability of ants to use sap of herbaceous plants has not been mentioned. This is the first evidence that ants of the genus Myrmica can intentionally ‘cut off’ young cereal sprouts to obtain plant sap. The investigation was carried out in a laboratory in 2018 and 2019 and involved three ant species of the genus Myrmica [12 colonies of M. rubra (Linnaeus, 1758); eight colonies of M. ruginodis Nylander, 1846; and five colonies of M. scabrinodis Nylander, 1846]. First observations were made occasionally in 10 ant colonies during the study of ant–aphid interactions. After three days of carbohydrate starvation, ants were supplied with the plants of wheat infested with aphids of Schizaphis graminum (Rondani, 1852). Within the first day in addition to ordinary trophobiotic relations with aphids, the workers of all the studied colonies demonstrated unexpected behaviour: they ‘cut off’ some sprouts and collected sap of these plants. The experimental investigation in 15 ant colonies of various sizes (about 150, 300 and 500 workers) supplied with the plants infested or non-infested with aphids has shown that getting sap of herbs depends greatly on ant colony needs and available resources. The number of damaged plants was much higher both in the larger colonies of ants and in the absence of aphids. This way of getting carbohydrates allows ants to quickly obtain some extra food needed to maintain colony viability and seems to be one of the mechanisms promoting survival of ants in conditions of acute carbohydrate deficiency. At the same time, ants avoid using plant sap when there are more available alternative carbohydrate resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号