首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundBoron is a trace element that plays an important role in numerous biological functions, including calcium metabolism, growth and maintenance of bone tissue. However, there are still no precise indications regarding a possible role of boron supplementation, and its amount of supplementation, to maintain bone health. So the aim of this narrative review was to consider the state of the art on the effectiveness of boron supplementation (alone or with other micronutrients) on growth and maintenance of bone in humans through control of calcium, vitamin D and sex steroid hormone metabolism in order to suggest a daily dosage of boron supplementation.Main findingsThis review included 11 eligible studies: 7 regarding the supplementation with boron alone and 4 regarding supplementation with boron and other nutrients. Despite the number of studies considered being low, the number of subjects studied is high (594) and the results are interesting.ConclusionsThe studies considered in this narrative review have evaluated the positive effectiveness on bone, in humans, through control of calcium, vitamin D and sex steroid hormone metabolism, considering a dietary supplementation of 3 mg/day of boron (alone or with other nutrients); this supplementation is demonstrably useful to support bone health (in order to prevent and maintain adequate bone mineral density), also considering the daily dose of 3 mg is much lower than the Upper Level indicated by EFSA in the daily dose of 10 mg.  相似文献   

2.
Bone matrix is predominantly made up of collagen, and in vitro and in animal models studies have shown that silicon is linked to glycosaminoglycans and plays an important role in the formation of cross-links between collagen and proteoglycans, determining the beneficial effects on strength, composition, and mechanical properties of bone. However, there are still no precise indications regarding a possible role of silicon on bone health in humans. Given this background, the aim of this narrative review was to consider the effectiveness of silicon dietary intake and silicon dietary supplementation (alone or with other micronutrients), in order to suggest a daily dosage of Si supplementation, on bone mineral density in humans. This review included eight eligible studies: four regarding dietary intake and four considering supplementation with silicon alone or with other nutrients. Despite the number of studies considered being low, the number of subjects studied is high (10012) and the results are interesting. Although to date the available scientific evidences are not considered valid enough to allow to establish an adequate level of Silicon intake, based on extrapolations from the data obtained with studies on animal and human models, it has been suggested that an adequate intake in order to promote beneficial effects for bone could be considered to be around 25 mg silicon/day. As for silicon dietary supplements, it has been shown that the combined treatment with orthosilicic acid (6 mg), calcium, and vitamin D has a potentially beneficial effect on femoral BMD compared to only use of calcium and vitamin D.  相似文献   

3.
Previous studies have revealed that magnesium (Mg) plays a significant role in bone health; however, few studies have investigated the effects of Mg supplementation in diets with different calcium (Ca) levels on the bone status and bone metabolism in a growing stage. In this present study, we tested the effects of Mg supplementation on bone status in growing female rats, relative to Ca intake levels. A total of 40 Sprague–Dawley female rats aged 6 weeks were divided into the following four groups and fed for 12 weeks as indicated: (1) LCaAMg: low Ca (Ca, 0.1 % of total diet) and adequate Mg (Mg, 0.05 % of total diet), (2) LCaHMg: low Ca and high Mg ( Mg, 0.1 % of total diet), (3) ACaAMg: adequate Ca (Ca, 0.5 % of total diet) and adequate Mg, and (4) ACaHMg: adequate Ca and high Mg. Our results showed that Mg supplementation with the adequate Ca diet significantly increased the bone mineral contents, bone size (bone area and bone thickness), and bone mineral density of femur or tibia by improving bone metabolism without changing Ca absorption. Mg supplementation significantly increased the serum osteocalcin in the adequate-Ca-diet group (p?<?0.05), while the Mg supplementation significantly decreased the serum level of C-telopeptide cross-links of type I collagen in the adequate-Ca-diet group (p?<?0.001). This study suggests that Mg supplementation with adequate Ca intake in the growing stage may increase the bone mineral density and bone size by improving bone metabolism.  相似文献   

4.
Type 2 diabetes is characterized by cellular and extracellular Mg depletion. Epidemiologic studies showed a high prevalence of hypomagnesaemia and lower intracellular Mg concentrations in diabetic subjects. Insulin and glucose are important regulators of Mg metabolism. Intracellular Mg plays a key role in regulating insulin action, insulin-mediated-glucose uptake and vascular tone. Reduced intracellular Mg concentrations result in a defective tyrosine-kinase activity, post-receptorial impairment in insulin action, and worsening of insulin resistance in diabetic patients. Mg deficit has been proposed as a possible underlying common mechanism of the "insulin resistance" of different metabolic conditions. Low dietary Mg intake is also related to the development of type 2 diabetes. Benefits of Mg supplementation on metabolic profile in diabetic subjects have been found in most, but not all clinical studies, and larger prospective studies are needed to support the potential role of dietary Mg supplementation as a possible public health strategy in diabetes risk.  相似文献   

5.
This experiment was designed to compare the effect of ingestion of a wheat flours on mineral status and bone characteristics in rats. White flour was tested either without further mineral supplementation or with Mg, Fe, Zn and Cu supplementation. The flour diets were compared to a control purified diet. Four groups of 10 male Wistar rats each were fed one of the experimental diets for 6 wk and mineral status and tissue retention as well as bone characteristics were determined. As expected, mineral intake, except for calcium, was significantly lesser in rats fed the white flour diet than in the other groups. The rats fed the white flour diet had the lowest food intake, weight gain, fecal excretion and intestinal fermentation. The most important result was that Mg and Fe status were drastically lower in rats fed the white flour diet than in those fed whole flour or control diets. The status of these both elements were significantly improved by the mineral supplementation of white flour. There were no major significant differences between mineral-supplemented white flour and whole flour groups in mineral status. Furthermore, bone mineral densities (total, metaphyseal and diphyseal) were significantly lower in rats fed white flour diet compared to the other diet groups, while no significant difference was observed between the mineral-supplemented white flour, whole flour or control diet groups. In conclusion, the present work shows clearly the importance of mineral-supplementation of white wheat flour to sustain an adequate intake of minerals. Our results indicate also that the whole wheat flour did not negatively alter mineral bioavailability, in comparison to mineral supplemented white flour. Clinical studies are still needed to confirm these rat results in human.  相似文献   

6.
Recent studies have reported correlations between mineral intake and metabolic syndrome (MS), but accurate relationships and consistency in the results are difficult to confirm. Accordingly, this study aims to assess the dietary intakes of magnesium (Mg), manganese (Mn), and copper (Cu) to determine their relationship with MS. Data from a total of 5,136 adults (2,084 men, 3,052 women) was collected from the 2007–2008 Korea National Health and Nutrition Examination Survey (KNHANES), and the intakes of Mg, Mn, and Cu of the MS patients were compared with those of healthy adults. The relationship between the intakes of these minerals and the MS risks was analyzed. Diagnosis of MS was evaluated by the National Cholesterol Education Program's Adult Treatment Panel III (NCEP-ATP III) standards. Among all study subjects, 25.9 % (540 subjects) of the men and 24.5 % (748 subjects) of the women met diagnostic criteria for inclusion in the MS group. In the men, daily intakes of Mg and Cu in the MS group were significantly lower than those in control group, and in the women, daily intakes of energy, Mg, Mn, and Cu in the MS group were significantly lower than those of the control group. The women subjects with high blood pressure showed significantly lower intakes of Mg, Mn, and Cu than control subjects. In addition, in the women, the highest quartile of Mg and Cu was inversely associated with MS, but with adjustment were not maintained. However, in the postmenopausal women, MS was significant and inversely associated with the highest quartiles of Cu intake and the association remained significant after adjustments. Considering that MS incidence increases and dietary intake and nutrient density decrease with increasing age, and mineral intake is reduced accordingly, these results suggest that meal management with adequate mineral intake is advisable to control MS.  相似文献   

7.
Although osteoporosis is a major health concern for our growing population of the elderly, there continues to be a need for well-designed clinical and animal studies on the link between dietary magnesium (Mg) intake and osteoporosis. Relatively few animal studies have assessed the skeletal and hormonal impact of long-term low Mg intake; however, these studies have demonstrated that Mg deficiency results in bone loss. Potential mechanisms include a substance P-induced release of inflammatory cytokines as well as impaired production of parathyroid hormone and 1,25-dihydroxyvitamin D. Abnormal mineralization of bones may also contribute to skeletal fragility. Clinical studies have often varied greatly in study design, subject age, menopausal status and outcome variables that were assessed. Most studies focused on female subjects, thus pointing to the great need for studies on aging males. According to the U.S. Department of Agriculture, the mean Mg intake for males and females is 323 and 228 mg/day, respectively. These intake levels suggest that a substantial number of people may be at risk for Mg deficiency, especially if concomitant disorders and/or medications place the individual at further risk for Mg depletion. In this paper, we will review animal and human evidence of the association of Mg deficiency with osteoporosis and explore possible mechanisms by which this may occur.  相似文献   

8.
9.
10.
Silicon (Si) is important for the growth and development of bone and connective tissues. Several studies have reported that Si supplementation improved bone mineral density (BMD) in female ovarectomized rats. However, few studies have investigated the effects of Si supplementation on bone status and bone metabolism in male animals. The purpose of this study was to investigate the effects of Si supplementation on BMD and balance of calcium (Ca) and magnesium (Mg) in adult male mice. Si was administrated orally through demineralized water containing different contents of Si as a form of sodium metasilicate (0 %, control; 0.025 %, Si50; 0.050 %, Si100; and 0.075 %, Si150) to 9-week-old male mice for 4 weeks. Si supplementation did not alter weight gain or BMD of femur and tibia in male mice. However, a high level of Si (0.05 and 0.075 %) supplementation significantly decreased Mg retention without changing Ca retention. Serum alkaline phosphatase of Si-supplemented groups significantly decreased compared with that of the control. According to these results, short-term Si supplementation did not affect BMD but showed a possible effect on increasing the need for Mg in adult male mice.  相似文献   

11.
12.
Many studies have reported magnesium's role in nutrition as a vital factor involved in bone health. However, not enough studies have evaluated magnesium (Mg) intakes in young women. In this study, we evaluated Mg intake in healthy adults and its relation with bone quality. A total of 484 healthy young women in their early 20s were enrolled into the study. Anthropometric measurements, dietary intake survey using 3-day dietary records, and the bone quality of the calcaneus using quantitative ultrasounds were obtained and analyzed. Average age, height, and weight of the subjects were respectively 20.20?years, 161.37?cm, and 54.09?kg, respectively. Also, the average broadband ultrasound attenuation, speed of sound (SOS), stiffness index (SI), and calcaneus T scores were 114.32?dB/MHz, 1,568.45?m/s, 95.23, and 0.36?g/cm(2), respectively. The subject's average intake of energy was 1,543.19?kcal, and the average Mg intake was 185.87?mg/day. Mg intake per 1,000?kcal of consumed energy in our subjects was 119.85?mg. Subjects consumed 63.11% of the recommended intake for Mg. Food groups consumed with high Mg content in our subjects included cereals (38.62?mg), vegetables (36.97?mg), milk (16.82?mg), legumes (16.72?mg), and fish (16.50?mg). The level of Mg intake per 1,000?kcal showed significant correlation to the SOS in the calcaneus (r?=?0.110, p?相似文献   

13.
Determination of whether magnesium (Mg) is a nutrient of public health concern has been hindered by questionable Dietary Recommended Intakes (DRIs) and problematic status indicators that make Mg deficiency assessment formidable. Balance data obtained since 1997 indicate that the EAR and RDA for 70-kg healthy individuals are about 175 and 250 mg/day, respectively, and these DRIs decrease or increase based on body weight. These DRIs are less than those established for the USA and Canada. Urinary excretion data from tightly controlled metabolic unit balance studies indicate that urinary Mg excretion is 40 to 80 mg (1.65 to 3.29 mmol)/day when Mg intakes are <250 mg (10.28 mmol)/day, and 80 to 160 mg (3.29 to 6.58 mmol)/day when intakes are >250 mg (10.28 mmol)/day. However, changing from low to high urinary excretion with an increase in dietary intake occurs within a few days and vice versa. Thus, urinary Mg as a stand-alone status indicator would be most useful for population studies and not useful for individual status assessment. Tightly controlled metabolic unit depletion/repletion experiments indicate that serum Mg concentrations decrease only after a prolonged depletion if an individual has good Mg reserves. These experiments also found that, although individuals had serum Mg concentrations approaching 0.85 mmol/L (2.06 mg/dL), they had physiological changes that respond to Mg supplementation. Thus, metabolic unit findings suggest that individuals with serum Mg concentrations >0.75 mmol/L (1.82 mg/L), or as high as 0.85 mmol/L (2.06 mg/dL), could have a deficit in Mg such that they respond to Mg supplementation, especially if they have a dietary intake history showing <250 mg (10.28 mmol)/day and a urinary excretion of <80 mg (3.29 mmol)/day.  相似文献   

14.
Rats fed a magnesium (MG) deficient diet have a lower endurance capacity than rats fed Mg adequate diets. The current study evaluates the effects of marginal, moderate, and severe Mg deficiencies on physiological and biochemical changes that may contribute to the reduced endurance capacity of Mg deficient rats. Variable levels of dietary Mg (400, 200, 100, 50 μg/g) were fed for 23 d to 5-wk-old male Osborne-Mendel rats. Indirect blood pressure and heart rate were measured during dietary treatment. Forty-eight hours after an endurance test, rats were killed and sampled for plasma glucose, insulin, and triglyceride levels. Organ weights, mineral and trace element concentrations, and carcass composition were determined. Blood pressure was lower in rats fed 50 and 100 ppm Mg during the first half of the study than in controls (400 ppm Mg). There were no significant differences in blood pressure among groups at the end of the study. Heart rate was not affected by dietary Mg intake. Plasma insulin was lowered by decreasing dietary Mg; however, plasma glucose and triglyceride concentrations were not affected by dietary Mg intake. Rats fed 100 and 50 ppm Mg diets had significantly higher calcium concentrations in plasma and gastrocnemius muscle than controls. Dietary Mg variably affected tissue trace element (iron, zinc, copper, and manganese) concentrations but did not affect Mg concentrations in any organ studied. Body composition was significantly altered by dietary Mg intake. In conclusion, variable Mg intake differentially affects the parameters evaluated. Thus, the decreased endurance capacity of the Mg deficient rat is apparently not the result of a single biochemical lesion but is likely to be multifactorial.  相似文献   

15.
《Endocrine practice》2008,14(6):665-671
ObjectiveTo assess the prevalence of osteoporosis in healthy ambulatory postmenopausal Indian women as measured by dual-energy x-ray absorptiometry and to study the dietary calcium intake and vitamin D status and their influence on bone mineral density (BMD).MethodsWe conducted a community-based crosssectional study in a semiurban region. A randomized cluster sampling technique was used. The study cohort consisted of 150 ambulatory postmenopausal women (≥ 50 years old). Dual-energy x-ray absorptiometry for BMD was performed at the lumbar spine and femoral neck. Dietary calcium intake and biochemical variables were assessed.ResultsThe prevalence of osteoporosis was 48% at the lumbar spine, 16.7% at the femoral neck, and 50% at any site. The mean dietary calcium intake was much lower than the recommended intake for this age-group. There was a significant positive correlation between body mass index and BMD at the lumbar spine and the femoral neck (r = 0.4; P = .0001). BMD at the femoral neck was significantly less (mean, 0.657 versus 0.694 g/cm2) in the vitamin D-insufficient study subjects in comparison with the vitamin D-sufficient women (P = .03).ConclusionThe high prevalence of osteoporosis and vitamin D insufficiency in this semiurban group of postmenopausal women in India is a major health concern. Measures such as adequate calcium intake and vitamin D supplementation in women of this age-group may be beneficial. (Endocr Pract. 2008;14:665-671)  相似文献   

16.
Rawson ES  Venezia AC 《Amino acids》2011,40(5):1349-1362
The ingestion of the dietary supplement creatine (about 20 g/day for 5 days or about 2 g/day for 30 days) results in increased skeletal muscle creatine and phosphocreatine. Subsequently, the performance of high-intensity exercise tasks, which rely heavily on the creatine-phosphocreatine energy system, is enhanced. The well documented benefits of creatine supplementation in young adults, including increased lean body mass, increased strength, and enhanced fatigue resistance are particularly important to older adults. With aging and reduced physical activity, there are decreases in muscle creatine, muscle mass, bone density, and strength. However, there is evidence that creatine ingestion may reverse these changes, and subsequently improve activities of daily living. Several groups have demonstrated that in older adults, short-term high-dose creatine supplementation, independent of exercise training, increases body mass, enhances fatigue resistance, increases muscle strength, and improves the performance of activities of daily living. Similarly, in older adults, concurrent creatine supplementation and resistance training increase lean body mass, enhance fatigue resistance, increase muscle strength, and improve performance of activities of daily living to a greater extent than resistance training alone. Additionally, creatine supplementation plus resistance training results in a greater increase in bone mineral density than resistance training alone. Higher brain creatine is associated with improved neuropsychological performance, and recently, creatine supplementation has been shown to increase brain creatine and phosphocreatine. Subsequent studies have demonstrated that cognitive processing, that is either experimentally (following sleep deprivation) or naturally (due to aging) impaired, can be improved with creatine supplementation. Creatine is an inexpensive and safe dietary supplement that has both peripheral and central effects. The benefits afforded to older adults through creatine ingestion are substantial, can improve quality of life, and ultimately may reduce the disease burden associated with sarcopenia and cognitive dysfunction.  相似文献   

17.
Although evidence suggests that hair elements may reflect dietary habits and/or mineral intake, this topic remains controversial. This study therefore presents age-specific reference values for hair concentrations of Ca, Cu, Fe, Na, Mg, P and Zn using the LMS method of Cole, and investigates the relationship between dietary habits (i.e. food consumption frequencies) and hair mineral concentrations in 218 Belgian elementary school girls by reduced rank regression (RRR). Hair minerals were quantitatively determined via inductively coupled plasma?Cmass spectrometry after microwave-assisted acid digestion of 6-cm long vertex posterior hair samples. The Children??s Eating Habits Questionnaire??Food Frequency Questionnaire was used to obtain information on food consumption frequency of 43 food items in the month preceding hair collection. The established reference ranges were in line with data for other childhood or adolescent populations. The retained RRR factors explained 40, 50, 45, 46, 44 and 48?% of the variation of Ca, Cu, Fe, Mg, P and Zn concentrations in hair, respectively. Although this study demonstrated that a large proportion of hair mineral variation may be influenced by food consumption frequencies in elementary school girls, a number of food groups known to be rich sources of minerals did not show a relation with certain hair minerals. Future research should focus on mechanisms and processes involved in mineral incorporation and accumulation in scalp hair, in order to fully understand the importance and influence of diet on hair minerals.  相似文献   

18.
Magnesium (Mg) is an essential nutrient as a structural constituent of bone and regulator of >300 enzymes. However, studies on intake and urinary excretion of Mg are limited. The purpose of this study was to evaluate Mg intake and its relation to 24-h urinary excretion in healthy adults. Anthropometric measurements and dietary intake by the 24-h recall method were conducted in 80 adults aged 21–69 (average 44.3) years. Urine was collected for 24 h on the day following the dietary survey. Dietary assessment and 24-h urine collection were repeated 3 days later. Daily intake and urinary excretion of Mg were analyzed using Can-Pro and ICP-OES, respectively. The statistical analysis was conducted using SAS program. Mg intake of the subjects was 319 ± 129 mg/day for men and 277 ± 94 mg/day for women and the proportion of subjects who did not meet the estimated average requirement was 50 and 67.5 % for men and women, respectively. Urinary Mg excretion was 30.3 % of the daily Mg intake. Urinary Mg excretion was not significantly correlated with the daily Mg intake. Korean adults are not meeting the recommended intake of Mg, but its urinary excretion suggests homeostasis is not compromised.  相似文献   

19.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

20.
OBJECTIVE--To evaluate the factors that determine bone mineral density at axial and appendicular sites in normal men. DESIGN--Measurement of bone mineral density of the radius by single photon absorptiometry and of the lumbar spine and hip by dual photon absorptiometry to assess their relation with various determinants of bone mineral density. Dietary calcium was assessed from a questionnaire validated against a four day dietary record. SETTING--Local community, Sydney, Australia. PATIENTS--48 Men (aged 21-79, median 44) recruited from the local community including 35 male cotwins of twin pairs of differing sex recruited from the Australian National Health and Medical Research Council twin registry for epidemiological studies on determinants of bone mineral density. MAIN OUTCOME MEASURES--Bone mineral density of the axial and appendicular skeleton and its relation to age, anthropometric features, dietary calcium intake, and serum sex hormone concentrations. RESULTS--Dietary calcium intake (g/day) was a significant predictor of bone mineral density of axial bones, explaining 24% and 42% of the variance at the lumbar spine and femoral neck respectively. This effect was independent of weight. In contrast with the axial skeleton, bone mineral density at each forearm site was predicted by weight and an index of free testosterone but not by dietary calcium intake. CONCLUSIONS--Dietary calcium intake has a role in the determination or maintenance, or both, of the axial but not the appendicular skeleton in adult men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号