首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.  相似文献   

2.
Broccoli (Brassica oleracea L. var. Italica) is a recognised health-promoting vegetable, which is moderately sensitive to salinity. In this study, the primary response of broccoli plants (cv. Marathon) to salinity has been characterised. For this, leaf water relations, nutrient composition, root hydraulic conductivity (L 0) and the effect of mercury (an aquaporin blocker) on L 0 were determined for plants grown with 0, 20, 40, 60, 80 or 100 mM NaCl for 2 weeks. During the 2 weeks of treatment, the plants showed a two-phase growth response to salinity. During the first phase (1 week), growth reduction was high, probably related to water stress as no osmotic adjustment occurred and reductions of L 0, the mercury effect and Gs were observed. After 2 weeks, the growth reduction could have resulted from internal injury caused by Na+ or Cl, since osmotic adjustment was achieved and water relations plus the mercury effect were re-established to a high degree, indicating high aquaporin functionality. The fact that aquaporin functionality fits well with the overall water relations response is very relevant, since the two-phase adaptation to salinity may imply two types of aquaporin regulation.  相似文献   

3.
Heavy metals (HMs) are known to have negative effects on plant water status; however, the mechanisms by which plants rearrange their water relations to adapt to such conditions are poorly understood. Using the model plant Mesembryanthemum crystallinum, we studied disturbances in water status and rapid plant defence responses induced by excess copper or zinc. After a day of HM stress, reductions in root sap exudation and water deficits in leaf tissues became evident. We also observed several primary adaptive events, including a rapid decrease in the transpiration rate and progressive declines in the leaf-cell sap osmotic potential. Longer HM treatments resulted in reductions of total and relative water contents as well as proline accumulation, an increase in water retention capacity and changes in aquaporin gene expression. After 3 h of HM exposure, leaf expression of the McTIP2;2 gene, which encodes tonoplast aquaporin, was suppressed more than two-fold, thus representing one of the earliest responses to HM treatment. The expression of three additional aquaporin genes was also reduced starting at 9 h; this effect became more prominent upon longer HM exposure. These results indicate that HMs induce critical rearrangements in the water relations of M. crystallinum plants, based on the rapid suppression of transpiration flow and strong inhibition of root sap exudation. These effects then triggered an adaptive water-conserving strategy involving differential regulation of aquaporin gene expression in leaves and roots, further reductions in transpiration, and an accelerated switch to CAM photosynthesis.  相似文献   

4.
It is documented that some plant-growth-promoting rhizobacteria (PGPR) enhance plant salt tolerance. However, as to how PGPR may influence two crucial components of plant salt tolerance such as, root hydraulic characteristics and aquaporin regulation has been almost unexplored. Here, maize (Zea mays L.) plants were inoculated with a Bacillus megaterium strain previously isolated from a degraded soil and characterized as PGPR. Inoculated plants were found to exhibit higher root hydraulic conductance (L) values under both unstressed and salt-stressed conditions. These higher L values in inoculated plants correlated with higher plasma membrane type two (PIP2) aquaporin amount in their roots under salt-stressed conditions. Also, ZmPIP1;1 protein amount under salt-stressed conditions was higher in inoculated leaves than in non-inoculated ones. Hence, the different regulation of PIP aquaporin expression and abundance by the inoculation with the B. megaterium strain could be one of the causes of the different salt response in terms of root growth, necrotic leaf area, leaf relative water content and L by the inoculation treatment.  相似文献   

5.
The effects of mild osmotic stress conditions on aquaporin-mediated water transport are not well understood. In the present study, mild osmotic stress treatments with 20 and 50 g L?1 polyethylene glycol 6000 (PEG) in Hoagland’s mineral solution were applied for 3 weeks under controlled environmental conditions to transgenic Populus tremula × Populus alba plants constitutively over-expressing a Populus PIP2;5 aquaporin and compared with the wild-type plants. The PEG treatments resulted in growth reductions and triggered changes in net photosynthesis, transpiration, stomatal conductance and root hydraulic conductivity in the wild-type plants. However, height growth, leaf area, gas exchange, and root hydraulic conductivity were less affected by the PEG treatments in PIP2;5-over-expressing poplar lines. These results suggest that water transport across the PIP2;5 aquaporin is an important process contributing to tolerance of mild osmotic stress in poplar. Greater membrane abundance of PIP2;5 was most likely the factor that was responsible for higher root hydraulic conductivity leading to improved plant water flux and, consequently, greater gas exchange and growth rates under mild osmotic stress conditions. The results also provide evidence for the functional significance of PIP2;5 aquaporin in water transport and its strong link to growth processes in poplar.  相似文献   

6.
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi‐arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr, indicating how the interaction of different aquaporins may render diverse Lpr values.  相似文献   

7.
The effects of abscisic acid (ABA) on aquaporin content, root hydraulic conductivity (Lpr), whole plant hydraulic conductance, and leaf growth are controversial. We addressed these effects via a combination of experiments at different scales of plant organization and tested their consistency via a model. We analyzed under moderate water deficit a series of transformed maize (Zea mays) lines, one sense and three antisense, affected in NCED (for 9-cis-epoxycarotenoid dioxygenase) gene expression and that differed in the concentration of ABA in the xylem sap. In roots, the mRNA expression of most aquaporin PIP (for plasma membrane intrinsic protein) genes was increased in sense plants and decreased in antisense plants. The same pattern was observed for the protein contents of four PIPs. This resulted in more than 6-fold differences between lines in Lpr under both hydrostatic and osmotic gradients of water potential. This effect was probably due to differences in aquaporin activity, because it was nearly abolished by a hydrogen peroxide treatment, which blocks the water channel activity of aquaporins. The hydraulic conductance of intact whole plants was affected in the same way when measured either in steady-state conditions or via the rate of recovery of leaf water potential after rewatering. The recoveries of leaf water potential and elongation upon rehydration differed between lines and were accounted for by the experimentally measured Lpr in a model of water transfer. Overall, these results suggest that ABA has long-lasting effects on plant hydraulic properties via aquaporin activity, which contributes to the maintenance of a favorable plant water status.  相似文献   

8.

Background

Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.

Results

The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.

Conclusion

The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.  相似文献   

9.
The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.  相似文献   

10.

Key message

Transgenic Populus alba over-expressing a TIP aquaporin ( aqua1) showed a higher growth rate under Zn excess, suggesting that aqua1 could be involved in water homeostasis, rather than in Zn homeostasis.

Abstract

Populus is the internationally accepted model for physiological and developmental studies of tree traits under stress. In plants, aquaporins facilitate and regulate the diffusion of water, however, few poplar aquaporins have been characterized to date. In this study, we reported for the first time an in vivo characterization of Populus alba clone Villafranca transgenic plants over-expressing a TIP aquaporin (aqua1) of P. x euramericana clone I-214. An AQUA1:GFP chimeric construct, over-expressed in P. alba Villafranca clones, shows a cytoplasmic localization in roots, and it localizes in guard cells in leaves. When over-expressed in transgenic plants, aqua1 confers a higher growth rate compared to wild-type (wt) plants, without affecting chlorophyll accumulation, relative water content (RWC), and fluorescence performances, but increasing the intrinsic Transpiration Efficiency. In response to Zn (1 mM), transgenic lines did not show a significant increase in Zn accumulation as compared to wt plants, even though the over-expression of this gene confers higher tolerance in root tissues. These results suggest that, in poplar plants, this gene could be principally involved in regulation of water homeostasis and biomass production, rather than in Zn homeostasis.
  相似文献   

11.
Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought.  相似文献   

12.

Background

In the post-genomic era newly sequenced genomes can be used to deduce organismal functions from our knowledge of other systems. Here we apply this approach to analyzing the aquaporin gene family in Arabidopsis thaliana. The aquaporins are intrinsic membrane proteins that have been characterized as facilitators of water flux. Originally termed major intrinsic proteins (MIPs), they are now also known as water channels, glycerol facilitators and aqua-glyceroporins, yet recent data suggest that they facilitate the movement of other low-molecular-weight metabolites as well.

Results

The Arabidopsis genome contains 38 sequences with homology to aquaporin in four subfamilies, termed PIP, TIP, NIP and SIP. We have analyzed aquaporin family structure and expression using the A. thaliana genome sequence, and introduce a new NMR approach for the purpose of analyzing water movement in plant roots in vivo.

Conclusions

Our preliminary data indicate a strongly transcellular component for the flux of water in roots.  相似文献   

13.
The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.  相似文献   

14.
Despite the high isoform multiplicity of aquaporins in plants, with 35 homologues including 13 plasma membrane intrinsic proteins (PIPs) in Arabidosis thaliana, the individual and integrated functions of aquaporins under various physiological conditions remain unclear. To better understand aquaporin functions in plants under various stress conditions, we examined transgenic Arabidopsis and tobacco plants that constitutively overexpress Arabidopsis PIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates and water transport were found between the transgenic and wild-type plants when grown under favorable growth conditions. The transgenic plants overexpressing PIP1;4 or PIP2;5 displayed a rapid water loss under dehydration stress, which resulted in retarded germination and seedling growth under drought stress. In contrast, the transgenic plants overexpressing PIP1;4 or PIP2;5 showed enhanced water flow and facilitated germination under cold stress. The expression of several PIPs was noticeably affected by the overexpression of PIP1;4 or PIP2;5 in Arabidopsis under dehydration stress, suggesting that the expression of one aquaporin isoform influences the expression levels of other aquaporins under stress conditions. Taken together, our results demonstrate that overexpression of an aquaporin affects the expression of endogenous aquaporin genes and thereby impacts on seed germination, seedling growth, and stress responses of the plants under various stress conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Western-blot analysis was used to determine the contents of aquaporin isoforms MIP A, MIP B, and MIP C in cell membranes isolated from roots and leaves of Mesembryanthemum crystallinum plants with C3 and Crassulacean acid metabolism (CAM) types of photosynthesis. These membrane preparations were also used to assess osmotic water permeability; to this end, the rate of osmotic vesicle shrinking was registered as the light scattering intensity by the method of stopped flow. The cell membranes represented by the plasmalemma and the tonoplast-enriched fraction were obtained by separating the microsomes in a two-phase polymer system. Plant transition from C3 to CAM-photosynthesis occurred in the course of plant development or was induced by salinization. All three isoforms under study were found in the plasma membranes of roots and leaves of the C3 plants, whereas in the CAM plants, independent of the transition-inducing factor, the aquaporin contents notably decreased in the leaf membranes and remained unchanged in the roots. In the membranes isolated from roots and leaves of the C3 plants, the values of osmotic water permeability exceeded two–threefold the corresponding indices characteristic of the CAM plants. The authors believe that aquaporin isoforms in M. crystallinum are under the organ- and tissue-specific control.  相似文献   

16.
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.  相似文献   

17.
18.
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.  相似文献   

19.
20.
Aquaporins such as the plasma membrane intrinsic proteins (PIPs) allow water to move through cell membranes and are vital for stomatal movement in plants. Despite their importance, the dynamic changes in aquaporins during water efflux and influx have not been directly observed in real time in vivo. Here, to determine which factors regulate these changes during the bidirectional translocation of water, we examined aquaporin dynamics during the stomatal immune response to the bacterial flagellin-derived peptide flg22. The Arabidopsis (Arabidopsis thaliana) aquaporin mutant pip2;1 showed defects in the flg22-induced stomatal response. Variable-angle total internal reflection fluorescence microscopy revealed that the movement dynamics and dwell times of AQ6]GFP-AtPIP2;1 in guard cells and subsidiary cells exhibited cell type-specific dependencies on flg22. The cytoskeleton, rather than the cell wall, was the major factor regulating AtPIP2;1 dynamics, although both the cytoskeleton and cell wall might form bounded domains that restrict the diffusion of AtPIP2;1 in guard cells and subsidiary cells. Finally, our analysis revealed the different roles of cortical actin and microtubules in regulating AtPIP2;1 dynamics in guard cells, as well as subsidiary cells, under various conditions. Our observations shed light on the heterogeneous mechanisms that regulate membrane protein dynamics in plants in response to pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号