首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T Nilsson  M Jackson  P A Peterson 《Cell》1989,58(4):707-718
The adenoviral transmembrane E3/19K glycoprotein is a resident of the endoplasmic reticulum. Here we show that the last six amino acid residues of the 15-membered cytoplasmic tail are necessary and sufficient for the ER retention. These residues can be transplanted onto the cytoplasmic tail of other membrane-bound proteins such that ER residency is conferred. Deletion analysis demonstrated that no single amino acid residue is responsible for the retention. The identified structural motif must occupy the extreme COOH-terminal position to be functional. An endogenous transmembrane ER protein, UDP-glucuronosyltransferase, also contains a retention signal in its cytoplasmic tail. We suggest that short linear sequences occupying the extreme COOH-terminal position of transmembrane ER proteins serve as retention signals.  相似文献   

2.
Several algorithms have been developed that use amino acid sequences to predict whether or not a protein or a region of a protein is disordered. These algorithms make accurate predictions for disordered regions that are 30 amino acids or longer, but it is unclear whether the predictions can be directly related to the backbone dynamics of individual amino acid residues. The nuclear Overhauser effect between the amide nitrogen and hydrogen (NHNOE) provides an unambiguous measure of backbone dynamics at single residue resolution and is an excellent tool for characterizing the dynamic behavior of disordered proteins. In this report, we show that the NHNOE values for several members of a family of disordered proteins are highly correlated with the output from three popular algorithms used to predict disordered regions from amino acid sequence. This is the first test between an experimental measure of residue specific backbone dynamics and disorder predictions. The results suggest that some disorder predictors can accurately estimate the backbone dynamics of individual amino acids in a long disordered region.  相似文献   

3.
L-Arginine is a source of nitrogen oxide and plays a great role in a number of other biochemical processes. Functions and prospects for practical application of five groups of arginine-containing amino acid sequences and synthetic polyarginine sequences are considered. The physiological characteristics of well-known arginine-containing peptides, such as RGD containing, kyotorphin, and tuftsin, are described in detail.  相似文献   

4.
L-arginine is a source of nitrogen oxide and plays a great role in a number of other biochemical processes. Functions and prospects for practical application of five groups of arginine-containing amino acid sequences and synthetic polyarginine sequences are considered. The physiological characteristics of well-known arginine-containing peptides, such as RGD peptides, kyotorphin, and tuftsin, are described in detail. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru  相似文献   

5.
Short, self-assembling peptides form a variety of stable nanostructures used for the rational design of functional devices. Peptides serve as organic templates for conjugating biorecognition elements, and assembling ordered nanoparticle arrays and hybrid supramolecular structures. We are witnessing the emergence of a new phase of bionanotechnology, particularly towards electronic, photonic and plasmonic applications. Recent advances include self-assembly of photoluminescent semiconducting nanowires and peptide-conjugated systems for sensing, catalysis and energy storage. Concurrently, methods and tools have been developed to control and manipulate the self-assembled nanostructures. Furthermore, there is growing knowledge on nanostructure properties such as piezoelectricity, dipolar electric field and stability. This review focuses on the emerging role of short, linear self-assembling peptides as simple and versatile building blocks for nanodevices.  相似文献   

6.
Intrinsically disordered proteins are involved in a range of functional roles in the cell, as well as being associated with a number of diverse diseases, including cancers, neurodegenerative disorders, and cardiac myopathies. We use single-molecule fluorescence approaches to characterize disordered proteins implicated in the progression of Parkinson’s and Alzheimer’s diseases. Our goal is to understand, how disease-associated modifications to these proteins alter their conformational and dynamic properties and to relate these changes to disease pathology.  相似文献   

7.
Killian JA 《FEBS letters》2003,555(1):134-138
There are many ways in which lipids can modulate the activity of membrane proteins. Simply a change in hydrophobic thickness of the lipid bilayer, for example, already can have various consequences for membrane protein organization and hence for activity. By using synthetic transmembrane peptides, it could be established that these consequences include peptide oligomerization, tilt of transmembrane segments, and reorientation of side chains, depending on the specific properties of the peptides and lipids used. The results illustrate the potential of the use of synthetic model peptides to establish general principles that govern interactions between membrane proteins and surrounding lipids.  相似文献   

8.
Vibrational Raman optical activity (ROA), measured as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarized incident light, or as the intensity of a small circularly polarized component in the scattered light, is a powerful probe of the aqueous solution structure of proteins. The large number of structure-sensitive bands in protein ROA spectra makes multivariate analysis techniques such as nonlinear mapping (NLM) especially favorable for determining structural relationships between different proteins. We have previously used NLM to map a large dataset of peptide, protein, and virus ROA spectra into a readily visualizable two-dimensional space in which points close to or distant from each other, respectively, represent similar or dissimilar structures. As well as folded proteins, our dataset contains ROA spectra from many natively unfolded proteins, proteins containing both folded and unfolded domains, denatured partially structured molten globule and reduced protein states, together with folded proteins containing little or no alpha-helix or beta-sheet. In this article, the relative positions of these systems in the NLM plot are used to obtain information about any residual structure that they may contain. The striking differences between the structural propensities of proteins that are unfolded in their native states and those that are unfolded due to denaturation may be responsible for their often very different behavior, especially with regard to aggregation. An ab initio simulation of the Raman and ROA spectra of an alanine oligopeptide in the poly(L-proline) II-helical conformation confirms previous suggestions that this conformation is a significant structural element in disordered peptides and natively unfolded proteins. The use of ROA to identify and characterize proteins containing significant amounts of unfolded structure will, inter alia, be valuable in structural genomics/proteomics since unfolded sequences often inhibit crystallization.  相似文献   

9.
We will provide a translational view of using the recent technological advances in dental research for predicting, monitoring, and preventing the development of oral diseases by investigating the diagnostic and therapeutic role of salivary proteins. New analytical state-of-the-art technologies such as mass spectrometry and atomic force microscopy have revolutionized the field of oral biology. These novel technologies open avenues for a comprehensive characterization of the salivary proteins followed by the evaluation of the physiological functions which could make possible in a near future the development of a new series of synthetic protein for therapeutic propose able to prevent global oral diseases such as periodontal disease and dental caries, the two most prevalent oral diseases in the World.  相似文献   

10.
The interaction of tritium atoms with amino acid residue from short peptides was studied. The short peptides were considered as a model of extended polypeptides chain. Every residue in this chain has 100% steric accessibility. It was shown that: 1. The linear correlation exists between the residue accessible surface area (that is composed of hydrocarbon fragments) and the amount of tritium interacting with this residue; 2. The presence of the tertiary carbon atom in the residue side chain influences on the reactivity of this residue; 3. The N- or C-terminal residue presence does not influences on the possibility of interaction of this residue with tritium atoms. The obtained reactivity scale of amino acid residues is compared with other theoretical and experimental data.  相似文献   

11.
Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences.  相似文献   

12.
Activity-dependent neurotrophic factor 9 (ADNF9) and NAP are nine and eight amino acid peptides, which exhibit neuroprotective activity at femtomolar concentrations against cell toxic agents. We have here characterized their structures and interactions with dodecylphosphocholine (DPC) in phosphate-buffered saline (PBS). Circular dichroism analysis showed that ADNF9 and NAP are structurally disordered in PBS independent of peptide concentration and temperature, but appear to assume different secondary structure at increasing temperature. Sedimentation equilibrium analysis showed that both ADNF9 and NAP are monomeric at 37 °C, suggesting no self-association under physiological conditions. No secondary structure changes were observed in the presence of DPC, suggesting that ADNF9 and NAP do not interact with lipids.  相似文献   

13.
Previous studies based on bioinformatics showed that there is a sharp distinction of structural features and residue composition between the intrinsically disordered proteins and the folded proteins. What induces such a composition-related structural transition? How do various kinds of interactions work in such processes? In this work, we investigate these problems based on a survey on peptides randomly composed of charged residues (including glutamic acids and lysines) and the residues with different hydrophobicity, such as alanines, glycines, or phenylalanines. Based on simulations using all-atom model and replica-exchange Monte Carlo method, a coil-globule transition is observed for each peptide. The corresponding transition temperature is found to be dependent on the contents of the hydrophobic and charged residues. For several cases, when the mean hydrophobicity is larger than a certain threshold, the transition temperature is higher than the room temperature, and vise versa. These thresholds of hydrophobicity and net charge are quantitatively consistent with the border line observed from the study of bioinformatics. These results outline the basic physical reasons for the compositional distinction between the intrinsically disordered proteins and the folded proteins. Furthermore, the contributions of various interactions to the structural variation of peptides are analyzed based on the contact statistics and the charge-pattern dependence of the gyration radii of the peptides. Our observations imply that the hydrophobicity contributes essentially to such composition-related transitions. Thus, we achieve a better understanding on composition–structure relation of the natural proteins and the underlying physics.  相似文献   

14.
15.
A thermodynamic model describing formation of α-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining α-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The α-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each α-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set I] and [set 2]) and for 30 mostly α-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix—coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix—coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area. © 1997 John Wiley & Sons, Inc. Biopoly 42: 239–269, 1997  相似文献   

16.
A computer program (PINCERS) is described for use in the design of synthetic genes and mixed-probe DNA sequences. A protein sequence is reverse translated with generation of synonymous codons at each position producing a degenerate sequence. In order to locate potential restriction enzyme sites, the degenerate sequence is searched with a library of restriction enzymes for sites that utilize any combination of synonymous codons. These sites are indicated in a map so that they may be incorporated into the synthetic gene sequence. The program allows the user to select the appropriate codon usage table for the organism of interest and then to set a threshold usage frequency below which codons are not generated. PINCERS may also be used to assist in planning the synthesis of mixed-probe DNA sequences for cross-hybridization experiments. It can identify regions of specified length with the protein sequence that have the least overall degeneracy, thereby minimizing the number of probes to be synthesized and, therefore, maximizing the concentration of a given probe sequence.  相似文献   

17.
The interaction of protoporphyrin compounds of human origin with the major bee venom component melittin (26 a.a., Z +6) and its hybrid derivative (CM15, 15 a.a., Z +6) were studied by a combination of various spectroscopic methods. Throughout a two‐state, concentration‐dependent process, hemin and its metabolites (biliverdin, bilirubin, bilirubin ditaurate) increase the parallel β‐sheet content of the natively unfolded melittin, suggesting the oligomerization of the peptide chains. In contrast, α‐helix promoting effect was observed with the also disordered but more cationic CM15. According to fluorescence quenching experiments, the sole Trp residue of melittin is the key player during the binding, in the vicinity of which the first pigment molecule is accommodated presumably making indole‐porphyrin π‐π stacking interaction. As circular dichroism titration data suggest, cooperative association of additional ligands subsequently occurs, resulting in multimeric complexes with an apparent dissociation constant ranged from 20 to 65 μM. Spectroscopic measurements conducted with the bilirubin catabolite urobilin and stercobilin refer to the requirement of intact dipyrrinone moieties for inducing secondary structure transformations. The binding topography of porphyrin rings on a model parallel β‐sheet motif was evaluated by absorption spectroscopy and computational modeling showing a slipped‐cofacial binding mode responsible for the red shift and hypochromism of the Soret band. Our results may aid to recognize porphyrin‐responsive binding motifs of biologically relevant, intrinsically disordered peptides and proteins, where transient conformations play a vital role in their functions.  相似文献   

18.
Late embryogenesis abundant (LEA) proteins are produced during seed embryogenesis and in vegetative tissue in response to various abiotic stressors. A correlation has been established between LEA expression and stress tolerance, yet their precise biochemical mechanism remains elusive. LEA proteins are very rich in hydrophilic amino acids, and they have been found to be intrinsically disordered proteins (IDPs) in vitro. Here, we perform biochemical and structural analyses of the four LEA3 proteins from Arabidopsis thaliana (AtLEA3). We show that the LEA3 proteins are disordered in solution but have regions with propensity for order. All LEA3 proteins were effective cryoprotectants of LDH in the freeze/thaw assays, while only one member, AtLEA3‐4, was shown to bind Cu2+ and Fe3+ ions with micromolar affinity. As well, only AtLEA3‐4 showed binding and a gain in α‐helicity in the presence of the membrane mimic dodecylphosphocholine (DPC). We explored this interaction in greater detail using 15N‐heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance, and demonstrate that two sets of conserved motifs present in AtLEA3‐4 are involved in the interaction with the DPC micelles, which themselves gain α‐helical structure.  相似文献   

19.
We report an optimized synthesis of all canonical 2′-O-TOM protected ribonucleoside phosphoramidites and solid supports containing [13C5]-labeled ribose moieties, their sequence-specific introduction into very short RNA sequences and their use for the structure determination of two protein–RNA complexes. These specifically labeled sequences facilitate RNA resonance assignments and are essential to assign a high number of sugar–sugar and intermolecular NOEs, which ultimately improve the precision and accuracy of the resulting structures. This labeling strategy is particularly useful for the study of protein–RNA complexes with single-stranded RNA in solution, which is rapidly an increasingly relevant research area in biology.  相似文献   

20.
Circular dichroism (CD) spectroscopy of five Arabidopsis late embryogenesis abundant (LEA) proteins constituting the plant specific families LEA_5 and LEA_6 showed that they are intrinsically disordered in solution and partially fold during drying. Structural predictions were comparable to these results for hydrated LEA_6, but not for LEA_5 proteins. FTIR spectroscopy showed that verbascose, but not sucrose, strongly affected the structure of the dry proteins. The four investigated globular proteins were only mildly affected by drying in the absence, but strongly in the presence of sugars. These data highlight the larger structural flexibility of disordered compared to globular proteins and the impact of sugars on the structure of both disordered and globular proteins during drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号