首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

For insect herbivores, a critical niche requirement—possibly the critical niche requirement—is the presence of suitable host plants. Current research suggests that non-native plants are not as suitable as native plants for native herbivores, resulting in decreases in insect abundance and richness on non-native plants. Like herbivores, gall-forming insects engage in complex, species-specific interactions with host plants. Galls are plant tissue tumors (including bulbous or spindle-shaped protrusions on leaves, stems and other plant organs) that are induced by insects through physical or chemical damage (prompting plants to grow a protective tissue shell around the insect eggs and larvae). As such, we hypothesized that gall-inducing insect species richness would be higher on native than non-native plants. We also predicted higher gall-inducing insect species richness on woody than herbaceous plants. We used an extensive literature review in which we compiled gall host plant species by genus, and we assigned native or non-native (or mixed) status to each genus. We found that native plants host far more gall-inducing insect species than non-native plants; woody plants host more gall-inducing species than herbaceous plants; and native woody plants host the most gall-inducing species of all. Gall-inducing species generally are a very cryptic group, even for experts, and hence do not elicit the conservation efforts of more charismatic insects such as plant pollinators. Our results suggest that non-native plants, particularly non-native woody species, diminish suitable habitat for gall-inducing species in parallel with similar results found for other herbivores, such as Lepidopterans. Hence, the landscape-level replacement of native with non-native species, particularly woody ones, degrades taxonomically diverse gall-inducing species (and their inquilines and parasitoids), removing multiple layers of diversity from forest ecosystems.

  相似文献   

2.
Host range expansion by British moths onto introduced conifers   总被引:2,自引:0,他引:2  
Abstract.
  • 1 Over 2% of British angiosperm-feeding moths (Lepidoptera) have been recorded feeding on conifers introduced to Britain, and may be undergoing host range expansion.
  • 2 We compared some of the life-history traits and ecological characteristics of fifty such species, originally exploiting angiosperms and now recorded feeding on conifers, with those of 400 non-shifting angiosperm-feeding moths, to identify those factors linked with host shifting.
  • 3 Shifting species attack a wider range of angiosperms than non-shifting species, their original hosts tend to be woody tress and shrubs, and they hatch from the egg earlier in the year.
  • 4 Comparisons with the random control samples suggest that larval feeding habit and overwintering stage are also important (species with less intimate relations with the host plant, and those overwintering as eggs are more likely to shift); these trends persisted when the taxonomic distribution of the shift species was controlled for, though were no longer significant.
  • 5 Moth species in habitats and on host plant families which are associated with conifer afforestation in upland Britain are more likely to shift, suggesting that ecological opportunity is an important factor in host range expansion.
  相似文献   

3.
We used comparative methods that account for the phylogenetic correlations among species to test hypotheses about the community of gall-inducing insects on dicotyledonous and monocotyledonous plants and woody and herbaceous angiosperms in the UK. We found that the species richness of gall-inducing insects on dicots was greater than on monocots and that the odds of a dicot having an associated gall-inducing insect is 42% higher than for a monocot. Woody angiosperms have higher species richness of associated gall-inducing insects than do herbaceous angiosperms. Furthermore, using a Monte Carlo analysis we found that attacks by gall-inducing insects on monocot families were phylogenetically clustered in the order Poales, particularly within the grass family Poaceae. We suggest that the higher risk of attack on dicots and higher species richness of gall-inducing insects on woody angiosperms, which are exclusively dicots, arises because of differences in the abundance or susceptibility of dicot meristems to attack by gall-inducing insects. Architectural and anatomical differences between monocots and dicots that give rise to differences in meristem abundance and anatomy appear to play an important role in determining the occurrence and richness of associated gall-inducing insects on host plants.  相似文献   

4.
A central issue in ecology is the understanding of the establishment of biotic interactions. We studied the factors that affect the assembly of the commensalistic interactions between vascular epiphytes and their host plants. We used an analytical approach that considers all individuals and species of epiphytic bromeliads and woody hosts and non-hosts at study plots. We built models of interaction probabilities among species to assess if host traits and abundance and spatial overlap of species predict the quantitative epiphyte–host network. Species abundance, species spatial overlap and host size largely predicted pairwise interactions and several network metrics. Wood density and bark texture of hosts also contributed to explain network structure. Epiphytes were more common on large hosts, on abundant woody species, with denser wood and/or rougher bark. The network had a low level of specialization, although several interactions were more frequent than expected by the models. We did not detect a phylogenetic signal on the network structure. The effect of host size on the establishment of epiphytes indicates that mature forests are necessary to preserve diverse bromeliad communities.  相似文献   

5.
Exotic phytophagous insects are invading forest ecosystems worldwide. So far, 109 invasive insects on woody plants, 57 from North American (NA), and 52 from Asia (A) have established populations in European forests. Four orders account for about 84% of the immigrants: Homoptera 39%, Lepidoptera 13%, Coleoptera 19%, and Hymenoptera 13%. The majority of these invasive species (63% of NA and 77% of A) live on deciduous trees, of which 36% have been introduced from NA and Asia. The remaining insect species (37% NA and 25% A) live on various conifers, of which 53% have also been introduced. Most (57%) of the NA insects feeding on coniferous plants live upon their introduced, native host plants. These data suggest that many NA immigrant phytophagous species in Europe have been successful in establishing permanent populations because their native hosts preceded or accompanied them into Europe and/or were asexually reproducing species. We propose that fewer invasive phytophagous insects have become established in European compared to North American woodlands because of the unique legacy of the European Pleistocene/Holocene crucible (i.e. endless cycles of populations contracting into highly disparate, dispersed metapopulation refugia and eventually expanding out of them) on European species and ecosystems that caused highly diminished heterogeneity. This translates to fewer and less penetrable tri-trophic niches in Europe due to fewer and less available host plants, but greater zootic resistance per niche derived from more competition-hardened competitors and possibly natural enemies. Moreover, many European species are probably superior invasion specialists because the crucible favored traits that are conducive to success in highly subdivided, and extinction-prone metapopulations: asexual reproduction, polyploidy, and other traits especially conducive to persistence under stress, and explosive growth/spread under amelioration.  相似文献   

6.
Ongoing debate over the relationship between biodiversity and disease risk underscores the need to develop a more mechanistic understanding of how changes in host community composition influence parasite transmission, particularly in complex communities with multiple hosts. A key challenge involves determining how motile parasites select among potential hosts and the degree to which this process shifts with community composition. Focusing on interactions between larval amphibians and the pathogenic trematode Ribeiroia ondatrae, we designed a novel, large-volume set of choice chambers to assess how the selectivity of free-swimming infectious parasites varied among five host species and in response to changes in assemblage composition (four different permutations). In a second set of trials, cercariae were allowed to contact and infect hosts, allowing comparison of host-parasite encounter rates (parasite choice) with infection outcomes (successful infections). Cercariae exhibited consistent preferences for specific host species that were independent of the community context; large-bodied amphibians, such as larval bullfrogs (Rana catesbeiana), exhibited the highest level of parasite attraction. However, because host attractiveness was decoupled from susceptibility to infection, assemblage composition sharply affected both per-host infection as well as total infection (summed among co-occurring hosts). Species such as the non-native R. catesbeiana functioned as epidemiological ‘sinks’ or dilution hosts, attracting a disproportionate fraction of parasites relative to the number that established successfully, whereas Taricha granulosa and especially Pseudacris regilla supported comparatively more metacercariae relative to cercariae selection. These findings provide a framework for integrating information on parasite preference in combination with more traditional factors such as host competence and density to forecast how changes within complex communities will affect parasite transmission.  相似文献   

7.
A list of non-native phytophagous insects and mites on woody plants (trees, shrubs, vines) in Canada was compiled using information from literature and input from taxonomists. The 419 recorded species include Hemiptera (53% of species), Lepidoptera (22%), Coleoptera (13%) and Hymenoptera (9%). Almost all species originate from the Palearctic, especially Europe, reflecting historical trade patterns. About 41% of species were directly introduced to Canada from countries of origin, and the remainder spread from the United States of America (USA) after initial establishment there. Major ports on the east and west coasts, on Lake Erie and Lake Ontario are the main points of entry for exotic species directly introduced, and southern British Columbia (BC), Ontario (ON) and Quebec (QC) are the major points of entry for species spreading from the USA. Consequently, BC, ON, QC and Nova Scotia have the highest diversity of non-native species, and the prairie provinces and northern territories have the lowest. The extent of the distribution of individual species is related to length of time in Canada, number of introductions and dispersal abilities. Almost all native woody plant genera in Canada have been invaded by exotic phytophages. The large majority of phytophages occur on angiosperms. Woody plant genera with the largest distribution, highest species diversity and highest local abundances tend to host the greatest number of non-native species, including Picea, Pinus, Malus, Prunus, Salix, Betula, Quercus, Pyrus and Populus. The arrival rate of species in Canada increased from the late nineteenth century until about 1960, and declined rapidly thereafter. Quarantine legislation enacted in the USA in 1912 and in Canada in 1976 seems to have reduced the rate of insect invasion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Mycorrhizae are widespread mutualistic symbioses crucial for the functioning of terrestrial ecosystems. Not all plants associate with mycorrhizae; most parasitic plants have been suggested to be nonmycorrhizal because they have developed alternative strategies to obtain nutrients. In endophytic parasitic plants, whose vegetative bodies grow completely inside their mycorrhizal host roots, the opportunity for establishing a tripartite association seems evident, but information on these systems is lacking. In studying natural associations among the endophytic holoparasite Cytinus hypocistis, their Cistaceae host species, and associated mycorrhizal fungi, we found that mycorrhizae were associated with the hosts and the parasites, reaching high frequencies of colonization. In parasitic and host root tissues, mycorrhizal fungi spread in the parenchymatic cells by intracellular growth and formed hyphal coils and vesicles, while the cambium and the vascular tissues were never colonized. This report is the first on a tripartite association of an endophytic parasitic plant, its host, and mycorrhizae in natural conditions, representing a novel trophic interaction not previously reported within the angiosperms. Additional studies on the interactions occurring among these three players are needed because they may be crucial to our understanding of how this mutualistic-antagonistic system is functioning and evolving.  相似文献   

9.
In herbivorous insects, host plant switching is commonly observed and plays an important role in their annual life cycle. However, much remains to be learned about seasonal host switching of various pestiferous arthropods under natural conditions. From 2006 until 2012, we assessed Apolygus lucorum (Meyer-Dür) host plant use in successive spring, summer and winter seasons at one single location (Langfang, China). Data were used to quantify changes in host plant breadth and host fidelity between seasons. Host fidelity of A. lucorum differed between seasons, with 87.9% of spring hosts also used in the summer and 36.1% of summer hosts used in winter. In contrast, as little as 25.6% host plant species were shared between winter and spring. Annual herbaceous plants are most often used for overwintering, while perennial woody plants are relatively important for initial population build-up in the spring. Our study contributes to an improved understanding of evolutionary interactions between A. lucorum and its host plants and lays the groundwork for the design of population management strategies for this important pest in myriad crops.  相似文献   

10.

Aim

Understanding how species' traits and environmental contexts relate to extinction risk is a critical priority for ecology and conservation biology. This study aims to identify and explore factors related to extinction risk between herbaceous and woody angiosperms to facilitate more effective conservation and management strategies and understand the interactions between environmental threats and species' traits.

Location

China.

Taxon

Angiosperms.

Methods

We obtained a large dataset including five traits, six extrinsic variables, and 796,118 occurrence records for 14,888 Chinese angiosperms. We assessed the phylogenetic signal and used phylogenetic generalized least squares regressions to explore relationships between extinction risk, plant traits, and extrinsic variables in woody and herbaceous angiosperms. We also used phylogenetic path analysis to evaluate causal relationships among traits, climate variables, and extinction risk of different growth forms.

Results

The phylogenetic signal of extinction risk differed among woody and herbaceous species. Angiosperm extinction risk was mainly affected by growth form, altitude, mean annual temperature, normalized difference vegetation index, and precipitation change from 1901 to 2020. Woody species' extinction risk was strongly affected by height and precipitation, whereas extinction risk for herbaceous species was mainly affected by mean annual temperature rather than plant traits.

Main conclusions

Woody species were more likely to have higher extinction risks than herbaceous species under climate change and extinction threat levels varied with both plant traits and extrinsic variables. The relationships we uncovered may help identify and protect threatened plant species and the ecosystems that rely on them.  相似文献   

11.
12.
Parasite-host cospeciation has received much attention as an important mechanism in the diversification of phytophagous insects. However, studies have shown that for certain taxa, it is not host fidelity but host-switching that plays the critical role in speciation. Cinara are aphids (Insecta: Hemiptera: Aphididae: Lachninae) that feed exclusively on the woody parts of conifers of the Cupressaceae and Pinaceae. They are unusual aphids because most Pinaceae play host to several species of Cinara. The aphids show relatively strong host fidelity, and as a consequence historically have been treated based on the taxonomy of their hosts. The historical paradigm of aphid evolution implies that Cinara species have radiated to different parts of the same host species and/or speciated with their host. Using mitochondrial cytochrome oxidase 1 and nuclear elongation factor 1-alpha DNA sequences, we performed molecular phylogenetic analysis of Cinara species, concentrating on those associated with pinyon pines in the southwestern USA. We determined that switching hosts has played a key role in the speciation of the genus, reflected in the polyphyly of pinyon-feeding Cinara. Furthermore, species sharing a common feeding site on different hosts were more closely related to each other than to those sharing the same host but at different feeding sites, suggesting that feeding site fidelity plays a more important role in speciation than does host fidelity in general. This study also elucidated the primary taxonomy of various species: it suggested that Cinara rustica Hottes is a junior synonym of C. edulis (Wilson) and that C. wahtolca Hottes represents two species on the two different pinyon pine species, Pinus edulis Englem. and P. monophylla Torr. & Frem.  相似文献   

13.
Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape.  相似文献   

14.
A total of 39 insect species, mostly seed chalcids in the genus Megastigmus (Hymenoptera), but also midges (Diptera), are listed as potential seed-borne invaders of Chinese conifers. Although the number of native seed insects per conifer genus does not differ between China and other biogeographical regions, there are significantly fewer seed insects associated with each conifer genus in China than potential invaders. The eventual success of the invaders is likely to depend on the presence of native Chinese conifers that are congeneric with the original host, or on the presence of the original host as an exotic. When a substantial entomofauna is already associated with cones, competition for seed resources may limit the potential impact of invaders because seed insects are usually the last organisms to colonize the cone. A survey of 26 fir species, both native and introduced to Europe, showed that overall seed infestation by five species of exotic chalcids is negatively correlated to levels of damage by native insects, except on the original hosts of the chalcids. Similar patterns are hypothesized for native firs, spruces, Douglas firs, and larches in China. Uncontrolled importation of seeds and nuts of broad-leaved trees could also facilitate the introduction of seed chalcids, seed bruchids, tortricid moths and nut weevils into China. Only six species of seed chalcids are present in China, out of the 72 known to attack broad-leaved seeds over the world.  相似文献   

15.
16.
The way in which herbivorous insect individuals use multiple host species is difficult to quantify under field conditions, but critical to understanding the evolutionary processes underpinning insect–host plant relationships. In this study we developed a novel approach to understanding the host plant interactions of the green mirid, Creontiades dilutus, a highly motile heteropteran bug that has been associated with many plant species. We combine quantified sampling of the insect across its various host plant species within particular sites and a molecular comparison between the insects'' gut contents and available host plants. This approach allows inferences to be made as to the plants fed upon by individual insects in the field. Quantified sampling shows that this “generalist” species is consistently more abundant on two species in the genus Cullen (Fabaceae), its primary host species, than on any other of its numerous listed hosts. The chloroplast intergenic sequences reveal that C. dilutus frequently feeds on plants additional to the one from which it was collected, even when individuals were sampled from the primary host species. These data may be reconciled by viewing multiple host use in this species as an adaptation to survive spatiotemporally ephemeral habitats. The methodological framework developed here provides a basis from which new insights into the feeding behaviour and host plant relationships of herbivorous insects can be derived, which will benefit not only ecological interpretation but also our understanding of the evolution of these relationships.  相似文献   

17.
Abstract— The classical view of rust phylogeny is that rusts found on ferns and conifers are primitive, while rusts that parasitize angiosperms are advanced. This belief was based on the theory that primitive hosts harbor primitive parasites; that is, it assumed coevolution (co-speciation) of hosts and parasites. A cladistic analysis of 30 genera and 28 characters representative of the major patterns of rust fungi diversity is presented. The results of this analysis suggest that tropical short-cycle rusts on angiosperms form the cladistically basal group of rusts, while the rusts on conifers and ferns (Melampsoraceae sensu lato ) form a nested terminal clade. These results suggest that rusts and their hosts have not undergone a long period of parallel cladogenesis (co-speciation); host transfer has probably been at least as frequent as co-speciation. The cladograms indicate evolutionary trends of spore stages and life history: urediniospores evidently preceded the evolution of aeciospores and pycniospores within Uredinales, and heteroecism is a derived condition which evolved at least several times. This study stresses the importance of making use of independent cladistic analyses of both host and parasite in order to test assumptions of coevolution and host transfer.  相似文献   

18.
The angiosperm radiation has been linked to sharp declines in gymnosperm diversity and the virtual elimination of conifers from the tropics. The conifer family Podocarpaceae stands as an exception with highest species diversity in wet equatorial forests. It has been hypothesized that efficient light harvesting by the highly flattened leaves of several podocarp genera facilitates persistence with canopy-forming angiosperms, and the angiosperm ecological radiation may have preferentially favoured the diversification of these lineages. To test these ideas, we develop a molecular phylogeny for Podocarpaceae using Bayesian-relaxed clock methods incorporating fossil time constraints. We find several independent origins of flattened foliage types, and that these lineages have diversified predominantly through the Cenozoic and therefore among canopy-forming angiosperms. The onset of sustained foliage flattening podocarp diversification is coincident with a declining diversification rate of scale/needle-leaved lineages and also with ecological and climatic transformations linked to angiosperm foliar evolution. We demonstrate that climatic range evolution is contingent on the underlying state for leaf morphology. Taken together, our findings imply that as angiosperms came to dominate most terrestrial ecosystems, competitive interactions at the foliar level have profoundly shaped podocarp geography and as a consequence, rates of lineage diversification.  相似文献   

19.
Changes in species distributions open novel parasite transmission routes at the human–wildlife interface, yet the strength of biotic and biogeographical factors that prevent or facilitate parasite host shifting are not well understood. We investigated global patterns of helminth parasite (Nematoda, Cestoda, Trematoda) sharing between mammalian wildlife species and domestic mammal hosts (including humans) using >24,000 unique country‐level records of host–parasite associations. We used hierarchical modelling and species trait data to determine possible drivers of the level of parasite sharing between wildlife species and either humans or domestic animal hosts. We found the diet of wildlife species to be a strong predictor of levels of helminth parasite sharing with humans and domestic animals, followed by a moderate effect of zoogeographical region and minor effects of species’ habitat and climatic niches. Combining model predictions with the distribution and ecological profile data of wildlife species, we projected global risk maps that uncovered strikingly similar patterns of wildlife parasite sharing across geographical areas for the different domestic host species (including humans). These similarities are largely explained by the fact that widespread parasites are commonly recorded infecting several domestic species. If the dietary profile and position in the trophic chain of a wildlife species largely drives its level of helminth parasite sharing with humans/domestic animals, future range shifts of host species that result in novel trophic interactions may likely increase parasite host shifting and have important ramifications for human and animal health.  相似文献   

20.
Global climate and land-use changes are the most significant causes of the current habitat loss and biodiversity crisis. Although there is information measuring these global changes, we lack a full understanding of how they impact community assemblies and species interactions across ecosystems. Herein, we assessed the potential distribution of eight key woody plant species associated with the habitat of the endangered Lilac-crowned Amazon (Amazon finschi) under global changes scenarios (2050′s and 2070′s), to answer the following questions: (1) how do predicted climate and land-use changes impact these species’ individual distributions and co-distribution patterns?; and (2) how effective is the existing Protected Area network for safeguarding the parrot species, the plant species, and their biological interactions? Our projections were consistent identifying the species that are most vulnerable to climate change. The distribution ranges of most of the species tended to decrease under future climates. These effects were strongly exacerbated when incorporating land-use changes into models. Even within existing protected areas, >50 % of the species’ remaining distribution and sites with the highest plant richness were predicted to be lost in the future under these combined scenarios. Currently, both individual species ranges and sites of highest richness of plants, shelter a high proportion (ca. 40 %) of the Lilac-crowned Amazon distribution. However, this spatial congruence could be reduced in the future, potentially disrupting the ecological associations among these taxa. We provide novel evidence for decision-makers to enhance conservation efforts to attain the long-term protection of this endangered Mexican endemic parrot and its habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号