首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report we examine the biological and molecular basis of the control of sympathetic neuron differentiation and survival by NGF and neurotrophin-3 (NT-3). NT-3 is as efficient as NGF in mediating neuritogenesis and expression of growth-associated genes in NGF-dependent sympathetic neurons, but it is 20–40fold less efficient in supporting their survival. Both NT-3 and NGF induce similar sustained, long-term activation of TrkA, while NGF is 10-fold more efficient than NT-3 in mediating acute, short-term TrkA activity. At similar acute levels of TrkA activation, NT-3 still mediates neuronal survival two- to threefold less well than NGF. However, a mutant NT-3 that activates TrkC, but not TrkA, is unable to support sympathetic neuron survival or neuritogenesis, indicating that NT3–mediated TrkA activation is necessary for both of these responses. On the basis of these data, we suggest that NGF and NT-3 differentially regulate the TrkA receptor both with regard to activation time course and downstream targets, leading to selective regulation of neuritogenesis and survival. Such differential responsiveness to two ligands acting through the same Trk receptor has important implications for neurotrophin function throughout the nervous system.  相似文献   

2.
Neurotrophin-3 (NT-3) has low-affinity (Kd = 8 x 10(-10) M), as well as high-affinity receptors (Kd = 1.8 x 10(-11) M) on embryonic chick sensory neurons, the latter in surprisingly high numbers. Like the structurally related proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), NT-3 also binds to the low-affinity NGF receptor, a molecule that we suggest to designate low-affinity neurotrophin receptor (LANR). NT-3 dissociates from the LANR much more rapidly than BDNF, and more slowly than NGF. The binding of labelled NT-3 to the LANR can be reduced by half using a concentration of BDNF corresponding to the Kd of BDNF to the LANR. In contrast, the binding of NT-3 to its high-affinity neuronal receptors can only be prevented by BDNF or NGF when used at concentrations several thousand-fold higher than those corresponding to their Kd to their high-affinity neuronal receptors. Thus, specific high-affinity NT-3 receptors exist on sensory neurons that can readily discriminate between three structurally related ligands. These findings, including the remarkable property of the LANR to bind three related ligands with similar affinity, but different rate constants, are discussed.  相似文献   

3.
Abstract: We have examined the role of the p75 neurotrophin receptor in survival-promoting effects of nerve growth factor (NGF) and neurotrophin-3 (NT-3) on cultured Purkinje cells. Previously, we showed that NGF promotes Purkinje cell survival in conjunction with (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD), an agonist of metabotropic excitatory amino acid receptors, whereas NT-3 by itself increases cell number. We now present evidence that p75 plays different roles in Purkinje cell responses to the two neurotrophins. A metabotropic receptor of the mGluR1 subtype may interact with p75 function, so as to regulate Purkinje cell responsiveness to neurotrophins. When cerebellar cultures were grown for 6 days in the presence of ACPD and a mutant form of NGF that does not bind to p75, no increase in Purkinje cell number was observed. Moreover, the survival-promoting effect of wild-type NGF and ACPD could be inhibited by a neutralizing antiserum to p75 or by a pyrazoloquinazolinone inhibitor of neurotrophin binding to p75. In contrast, the response to NT-3 was potentiated by anti-p75 treatment and by the quinazolinone. These data indicate the mediation of p75 in the trophic response to NGF-ACPD and a negative modulatory role of p75 in the action of NT-3. To probe the role of ACPD in the p75-dependent response to NGF, metabotropic receptor subtype-specific ligands were tested. The pattern of agonist specificity implicated the mGluR1 subtype, a receptor that is expressed at high levels by Purkinje cells and linked to activation of protein kinase C (PKC). Down-regulation or blockade of PKC abolished the response to NGF-ACPD. Consistent with the opposite roles of p75 in effects of the two neurotrophins, blockade of mGluR1 or PKC potentiated the survival response elicited by NT-3. In sum, our data suggest that afferent excitatory transmitters activate specific metabotropic receptors to elicit a p75-mediated action of NGF. NT-3 acts on Purkinje cells by a different mechanism that is not absolutely p75-dependent and that is reduced by neurotrophin access to p75 and metabotropic receptor activity.  相似文献   

4.
The liver represents a site of expression of neurotrophins and their receptors. We have characterized the expression and intracellular localization of the nerve growth factor (NGF) receptor, Trk-A, in liver cells in vivo and in vitro. In both normal and fibrotic liver tissue, Trk-A immunostaining was present in different cell types, including parenchymal cells and cells of the inflammatory infiltrate. In hepatocytes and activated stellate cells (HSC), Trk-A showed a predominant nuclear localization, both in the presence and absence of injury. In cultured HSC, Trk-A was found to be functional, because exposure of the cells to recombinant NGF resulted in stimulation of cell migration and activation of intracellular signaling pathways, including Ras-ERK and PI3K/Akt. Remarkably, in cultured HSC, Trk-A staining was found constitutively in the nucleus. In these cells, Trk-A could be stained only by antibodies directed against the intracellular domain but not by those recognizing the extracellular portion of Trk-A suggesting that the intracellular portion of the receptor is the major determinant of nuclear Trk-A staining. In contrast to HSC, freshly isolated hepatocytes did not show any nuclear localization of the intracellular portion of Trk-A. In pheocromocytoma cells, nuclear staining for Trk-A was not present in conditions of serum deprivation, but could be induced by exposure to NGF or to a mixture of soluble mediators. We conclude that nuclear localization of the intracellular domain of Trk-A is observed constitutively in liver cells such as HSC, while in other cell types it could be induced in response to soluble factors.  相似文献   

5.
trkB is a tyrosine protein kinase gene highly related to trk, a proto-oncogene that encodes a receptor for nerve growth factor (NGF) and neurotrophin-3 (NT-3). trkB expression is confined to structures of the central and peripheral nervous systems, suggesting it also encodes a receptor for neurotrophic factors. Here we show that brain-derived neurotrophic factor (BDNF) and NT-3, but not NGF, can induce rapid phosphorylation on tyrosine of gp145trkB, one of the receptors encoded by trkB. BDNF and NT-3 can induce DNA synthesis in quiescent NIH 3T3 cells that express gp145trkB. Cotransfection of plasmids encoding gp145trkB and BDNF or NT-3 leads to transformation of recipient NIH 3T3 cells. In these assays, BDNF elicits a response at least two orders of magnitude higher than NT-3. Finally, 125I-NT-3 binds to NIH 3T3 cells expressing gp145trkB; binding can be competed by NT-3 and BDNF but not by NGF. These findings indicate that gp145trkB may function as a neurotrophic receptor for BDNF and NT-3.  相似文献   

6.
Neurotrophins signal via Trk tyrosine kinase receptors. Nerve growth factor (NGF) is the cognate ligand for TrkA, the brain-derived neurotrophic factor for TrkB, and NT-3 for TrkC. NT-3 also binds TrkA as a lower affinity heterologous ligand. Because neurotrophin-3 (NT-3) interactions with TrkA are biologically relevant, we aimed to define the TrkA "hot spot" functional docking sites of NT-3. The Trk extracellular domain consists of two cysteine-rich subdomains (D1 and D3), flanking a leucine-rich subdomain (D2), and two immunoglobulin-like subdomains IgC1(D4) and IgC2(D5). Previously, the D5 subdomain was defined as the primary ligand-binding site of neurotrophins for their cognate receptors (e.g. NGF binds and activates through TRKA-D5 hot spots). Here binding studies with truncated and chimeric extracellular subdomains show that TRKA-D5 also includes an NT-3 docking and activation hot spot (site 1), and competition studies show that the NGF and NT-3 hot spots on TRKA-D5 are distinct but partially overlapping. In addition, ligand binding studies provide evidence for an NT-3-binding/allosteric site on TRKA-D4 (site 2). NT-3 docking on sites 1 and/or 2 partially blocks NGF binding. Functional survival studies showed that sites 1 and 2 regulate TrkA activation. NT-3 docking on both sites 1 and 2 affords full agonism, which can be additive with NGF activation of Trk. However, NT-3 docking solely on site 1 is partially agonistic but noncompetitively antagonizes NGF binding and activation of Trk. This study demonstrates that Trk signaling is more complex than previously thought because it involves several receptor subdomains and hot spots.  相似文献   

7.
We have investigated the NGF dependence of dorsal root ganglion (DRG) neurons in mammals using a paradigm of multiple in utero injections of a high titer anti-NGF antiserum. We have determined the specificity of our antiserum in relation to other members of the NGF neurotrophin family and found no cross-reactivity with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). To identify various classes of DRG neurons, we have stained their characteristic central projections with Dil. We show here that the NGF dependence of DRG neurons is strikingly selective. Although a majority of DRG neurons are lost after NGF deprivation during embryonic life, these are almost exclusively small diameter neurons that project to laminae I and II of the dorsal horn and presumably subserve nociception and thermoreception. Larger neurons that project to more ventral spinal laminae and subserve other sensory modalities do not require NGF for survival. These NGF-independent DRG neurons likely require one of the more recently identified neurotrophins, BDNF or NT-3.  相似文献   

8.
The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75(NTR) strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75(NTR) in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of (45)Ca(2+) by a phospholipase C-gamma-dependent pathway. Coexpression of p75(NTR) with TrkA inhibited (45)Ca(2+) efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75(NTR). Coexpression of a truncated p75(NTR) receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of (45)Ca(2+) efflux, whereas coexpression of an epidermal growth factor receptor/p75(NTR) chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75(NTR)) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75(NTR) was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75(NTR) binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75(NTR) with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate (45)Ca(2+) efflux. These data suggested a physical association between TrkA and p75(NTR). Documenting this physical interaction, we showed that p75(NTR) and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA.  相似文献   

9.
Sympathetic neurons comprise a population of postmitotic, tyrosine hydroxylase expressing cells whose survival is dependent upon nerve growth factor (NGF) both in vivo and in vitro. However, during development precursors to rat sympathetic neurons in the thoracolumbar region are not responsive to NGF because they lack the signal transducing NGF receptor, trkA. We have previously shown that acquisition of trkA expression is sufficient to confer a functional response to NGF. Here we describe four subpopulations of thoracolumbar sympathetic neuroblasts which are mitotically active and unresponsive to NGF at E13.5 of rat gestation, but differ based upon their neurotrophic responsiveness in vitro. The survival in culture of the largest sympathetic subpopulation is mediated by neurotrophin-3 (NT-3) or glial-derived neurotrophic factor (GDNF), whereas the cell survival of two smaller subpopulations of neuroblasts are mediated by either solely GDNF or solely NT-3. Finally, we identify a subpopulation of sympathetic neuroblasts in the thoracolumbar region whose survival, exit from the cell cycle, induction of trkA expression, and consequent acquisition of NGF responsiveness in culture appear to be neurotrophin independent and cell autonomous. These subpopulations reflect the diversity of neurotrophic actions that occur in the proper development of sympathetic neurons.  相似文献   

10.
In this work, we put forward the provocative hypothesis that the active, ligand-bound RTK dimers from unrelated subfamilies can associate into heterooligomers with novel signaling properties. This hypothesis is based on a quantitative FRET study that monitors the interactions between EGFR and VEGFR2 in the plasma membrane of live cells in the absence of ligand, in the presence of either EGF or VEGF, and in the presence of both ligands. We show that direct interactions occur between EGFR and VEGFR2 in the absence of ligand and in the presence of the two cognate ligands. However, there are not significant heterointeractions between EGFR and VEGFR2 when only one of the ligands is present. Since RTK dimers and RTK oligomers are believed to signal differently, this finding suggests a novel mechanism for signal diversification.  相似文献   

11.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

12.
Neurotrophin proteins are essential for the survival, differentiation, and maintenance of neurons in the peripheral and central nervous systems. Recent studies have shown that the unprocessed proforms of the neurotrophins are preferential high-affinity ligands for p75NTR and potent inducers of p75NTR-mediated cell death. Here, we explore differences in the selective constraints acting on the proregions of the three avian neurotrophin genes—NT-3, BDNF, and NGF—in an explicit phylogenetic context. We found a 50-fold difference in levels of constraint as estimated by d N/d S ratios, with the NGF proregion showing the lowest degree of constraint and BDNF the highest. These patterns suggest that the high conservation exhibited by the BDNF proregion results from intense functional constraints that are relaxed in NGF and somewhat relaxed in NT-3. The proregion of BDNF is likely to have a function that differentiates it from the corresponding regions of the NGF and NT-3 genes, suggesting that BDNF is the avian neurotrophin most likely to be used both in its precursor and mature forms in vivo.  相似文献   

13.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

14.
The product of the trk proto-oncogene encodes a receptor for nerve growth factor (NGF). Here we show that NGF is a powerful mitogen that can induce resting NIH 3T3 cells to enter S phase, grow in semisolid medium, and become morphologically transformed. These mitogenic effects are absolutely dependent on expression of gp140trk receptors, but do not require the presence of the previously described low affinity NGF receptor. gp140trk also serves as a receptor for the related factor neurotrophin-3 (NT-3), but not for brain-derived neurotrophic factor. Both NGF and NT-3 induce the rapid phosphorylation of gp140trk receptors and the transient expression of c-Fos proteins. However, NT-3 appears to elicit more limited mitogenic responses than NGF. These results indicate that the product of the trk proto-oncogene is sufficient to mediate signal transduction processes induced by NGF and NT-3, at least in proliferating cells.  相似文献   

15.

Background

Receptor tyrosine kinases (RTK) act through dimerization. Previously it was thought that only bivalent ligands could be agonistic, whereas monovalent ligands should be antagonistic. This notion changed after the demonstration that monovalent ligands can be agonistic, including our report of a small molecule monovalent ligand “D3” that is a partial agonist of the NGF receptor TrkA. A bivalent “D3-linker-D3” was expected to increase agonism.

Methods

Dimeric analogs were synthesized and tested in binding, biochemical, and biological assays.

Results

One analog, 1-ss, binds TrkA with higher affinity than D3 and induces or stabilizes receptor dimers. However, 1-ss exhibited antagonistic activity, through two mechanisms. One mechanism is that 1-ss blocks NGF binding, unlike D3 which is non-competitive. Inhibition of NGF binding may be due to the linker of 1-ss filling the inter-receptor space that NGF traverses before docking. In a second mechanism, 1-ss acts as a pure antagonist, inhibiting NGF-independent TrkA activity in cells over-expressing receptors. Inhibition is likely due to 1-ss “freezing” the TrkA dimer in the inactive state.

Conclusions

Dimerization of an RTK can result in antagonism, through two independent mechanisms.

General significance

we report a small molecule monovalent agonist being converted to a bivalent antagonist.  相似文献   

16.
The availability of relatively large amounts of nerve growth factor (NGF) has allowed extensive in vitro and in vivo characterization of the neuronal specificity of this neurotrophic factor. The restricted neuronal specificity of NGF (sympathetic neurons, neural crest-derived sensory neurons, basal forebrain cholinergic neurons) has long predicted the existence of other neurotrophic factors possessing different neuronal specificities. Whereas there have been many reports of "activities" distinct from NGF, full characterization of such molecules has been hampered by their extremely low abundance. The recent molecular cloning of brain-derived neurotrophic factor (BDNF) revealed that this protein is closely related to NGF and suggested that these two factors might be members of an even larger gene family. A PCR cloning strategy based on homologies between NGF and BDNF has allowed us to identify and clone a third member of the NGF family which we have termed neurotrophin-3 (NT-3). The establishment of suitable expression systems has now made available sufficient quantities of these proteins to allow us to begin to establish the neuronal specificity of each member of the neurotrophin family, and the role of each in development, maintenance and repair of the PNS and CNS. Using primary cultures of various PNS and CNS regions of the developing chick and rat, and Northern blot analysis, we describe novel neuronal specificities of BDNF, NT-3 and an unrelated neurotrophic factor-ciliary neurotrophic factor (CNTF).  相似文献   

17.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

18.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

19.

Introduction

The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been identified in the human intervertebral disc (IVD) and have been implicated in the mechanisms associated with nerve ingrowth and nociception in degeneration of the IVD. The aim of the current study was to investigate an association between neurotrophin expression in the IVD and the severity of disc degeneration, including the effect of disc-related proinflammatory cytokines on neurotrophin and neuropeptide expression in cells derived from the human IVD.

Methods

Immunohistochemical analysis was performed to examine the expression of NGF, BDNF and their high-affinity receptors Trk-A and Trk-B in human IVD samples, divided into three categories: non-degenerate, moderate degeneration and severe degeneration. In order to study the effect of disc-related cytokines on neurotrophin/neuropeptide gene expression, nucleus pulposus cells derived from non-degenerate and degenerate IVD samples were seeded in alginate and were stimulated with either IL-1β or TNFα for 48 hours. RNA was extracted, cDNA was synthesised and quantitative real-time PCR was performed to examine the expression of NGF, BDNF and substance P.

Results

Immunohistochemistry showed expression of NGF and BDNF in the native chondrocyte-like cells in all regions of the IVD and in all grades of degeneration. Interestingly only BDNF significantly increased with the severity of degeneration (P < 0.05). Similar expression was observed for Trk-A and Trk-B, although no association with disease severity was demonstrated. In cultured human nucleus pulposus cells, stimulation with IL-1β led to significant increases in NGF and BDNF gene expression (P < 0.05). Treatment with TNFα was associated with an upregulation of substance P expression only.

Conclusion

Our findings show that both the annulus fibrosus and nucleus pulposus cells of the IVD express the neurotrophins NGF and BDNF, factors that may influence and enhance innervation and pain in the degenerate IVD. Expression of Trk-A and Trk-B by cells of the nondegenerate and degenerate IVD suggests an autocrine role for neurotrophins in regulation of disc cell biology. Furthermore, modulation of neurotrophin expression by IL-1β and modulation of substance P expression by TNFα, coupled with their increased expression in the degenerate IVD, highlights novel roles for these cytokines in regulating nerve ingrowth in the degenerate IVD and associated back pain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号