首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

2.
Regulatory features of protein-induced membrane fusion are largely unclear, particularly at the level of the fusion peptide. Fusion peptides being part of larger protein complexes, such investigations are met with technical limitations. Here, we show that the fusion activity of influenza virus or Golgi membranes is strongly inhibited by minor amounts of (lyso)lipids when present in the target membrane but not when inserted into the viral or Golgi membrane itself. To investigate the underlying mechanism, we employ a membrane-anchored peptide system and show that fusion is similarly regulated by these lipids when inserted into the target but not when present in the peptide-containing membrane. Peptide-induced fusion is regulated by a reversible switch of secondary structure from a fusion-permissive alpha-helix to a nonfusogenic beta-sheet. The "on/off" activation of this switch is governed by minor amounts of (lyso)-phospholipids in targets, causing a drop in alpha-helix and a dramatic increase in beta-sheet contents. Concomitantly, fusion is inhibited, due to impaired peptide insertion into the target membrane. Our observations in biological fusion systems together with the model studies suggest that distinct lipids in target membranes provide a means for regulating membrane fusion by causing a reversible secondary structure switch of the fusion peptides.  相似文献   

3.
Lipid signalling in plant responses to abiotic stress   总被引:2,自引:0,他引:2       下载免费PDF全文
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N‐acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid‐dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid‐binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid–protein interactions, crucial for deciphering the signalling cascades.  相似文献   

4.
GUVs have been widely used for studies on lipid mobility, membrane dynamics and lipid domain (raft) formation, using single molecule techniques like fluorescence correlation spectroscopy. Reports on membrane protein dynamics in these types of model membranes are by far less advanced due to the difficulty of incorporating proteins into GUVs in a functional state. We have used sucrose to prevent four distinct membrane protein(s) (complexes) from inactivating during the dehydration step of the GUV-formation process. The amount of sucrose was optimized such that the proteins retained 100% biological activity, and many proteo-GUVs were obtained. Although GUVs could be formed by hydration of lipid mixtures composed of neutral and anionic lipids, an alternate current electric field was required for GUV formation from neutral lipids. Distribution, lateral mobility, and function of an ATP-binding cassette transport system, an ion-linked transporter, and a mechanosensitive channel in GUVs were determined by confocal imaging, fluorescence correlation spectroscopy, patch-clamp measurements, and biochemical techniques. In addition, we show that sucrose slows down the lateral mobility of fluorescent lipid analogs, possibly due to hydrogen-bonding with the lipid headgroups, leading to larger complexes with reduced mobility.  相似文献   

5.
Membrane protein structural biology is a frontier area of modern biomedical research. Twenty to thirty-five percent of the proteins encoded by an organism's genome are integral membrane proteins. Integral membrane proteins, such as channels, transporters, and receptors, are critical components of many fundamental biological processes. Also, many integral membrane proteins are important in biomedical and biotechnological applications; the majority of drug targets are integral membrane proteins. The sharp increase in the number of membrane protein structures over the last several years gives some indication that this field is poised for rather explosive growth as more and more investigators take on membrane protein projects. The purpose of this brief practical review was to take a snapshot of a field at the onset of its likely exponential growth phase, and to lay out the methods that have worked to date for obtaining membrane protein crystals suitable for structure determination by X-ray crystallography. Many of the successful experimental methods are identical to those used for soluble proteins. The major difference, and a non-trivial difference, is the necessity for inclusion of detergents above the critical micelle concentration in the purified membrane protein solution.  相似文献   

6.
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self‐assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native‐like bilayer environment that maintain a target''s functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.  相似文献   

7.
The Basic Protein of CNS Myelin: Its Structure and Ligand Binding   总被引:5,自引:0,他引:5  
Consideration of the evidence presented in this review leads to the following conclusions: (a) Isolated MBP in aqueous solution has little ordered secondary or tertiary structure. (b) In this state, the protein can associate with a wide range of hydrophobic and amphiphilic compounds, these interactions involving limited sections of the protein. (c) The strength of binding to bilayers and the accompanying conformational changes in the protein are greatest for systems containing acidic lipids, presumably because of the involvement of ionic interactions. (d) When bound to bilayers of acidic lipids, MBP will have substantially more ordered secondary structure than it manifests in aqueous solution, and it is likely to be oligomeric (possibly hexameric). (e) MBP does affect the organization of lipid aggregates. It influences strongly the separation of bilayers in multilayers of purified lipids, and at present this must be viewed as its prime role within myelin. The greatest impediment to our understanding of MBP is the lack of an assayable biological activity. In contrast to the situation with enzymes, for example, we have no functional test for changes in protein structure or changes accompanying interactions with other molecules. Current evidence suggests that the protein has a structural role within myelin and that its own three-dimensional structure is strongly dependent on the molecules with which it is associated. If this picture is correct, studies of the isolated protein or of the protein in reconstituted lipid systems may yield, at best, a rough guide to the structure within its biological environment. Further clarification of the structure and function of MBP may have to await development of more powerful techniques for studying proteins bound to large molecular aggregates, such as lipid bilayers. The paucity of generally applicable methods is reflected in the fact that even low resolution structures are known for only a handful of intrinsic membrane proteins, and even more limited information exists for proteins associated with membrane surfaces. However, the increasing use of a combination of electron microscopy and diffraction on two-dimensional arrays of proteins formed on lipid bilayers (Henderson et al., 1990) offers the hope that it may not be too long before it will be possible to study at moderate resolution the three-dimensional structure of MBP bound to a lipid membrane.  相似文献   

8.
Optimization of membrane protein stability under different solution conditions is essential for obtaining crystals that diffract to high resolution. Traditional methods that evaluate protein stability require large amounts of material and are, therefore, ill suited for medium- to high-throughput screening of membrane proteins. Here we present a rapid and efficient fluorescence-detection size-exclusion chromatography-based thermostability assay (FSEC-TS). In this method, the target protein is fused to GFP. Heated protein samples, treated with a panel of additives, are then analyzed by FSEC. FSEC-TS allows one to evaluate the thermostability of nanogram-to-microgram amounts of the target protein under?a variety of conditions without purification. We applied this method to the Danio rerio P2X4 receptor and Caenorhabditis elegans GluCl to screen ligands, ions, and lipids, including newly designed cholesterol derivatives. In the case of GluCl, the screening results were used to obtain crystals of the receptor in the presence of lipids.  相似文献   

9.
Non-enzymatic glycation of biomolecules has been implicated in the pathophysiology of aging and diabetes. Among the potential targets for glycation are biological membranes, characterized by a complex organization of lipids and proteins interacting and forming domains of different size and stability. In the present study, we analyse the effects of glycation on the interactions between membrane proteins and lipids. The phospholipid affinity for the transmembrane surface of the PMCA (plasma-membrane Ca(2+)-ATPase) was determined after incubating the protein or the phospholipids with glucose. Results show that the affinity between PMCA and the surrounding phospholipids decreases significantly after phosphospholipid glycation, but remains unmodified after glycation of the protein. Furthermore, phosphatidylethanolamine glycation decreases by approximately 30% the stability of PMCA against thermal denaturation, suggesting that glycated aminophospholipids induce a structural rearrangement in the protein that makes it more sensitive to thermal unfolding. We also verified that lipid glycation decreases the affinity of lipids for two other membrane proteins, suggesting that this effect might be common to membrane proteins. Extending these results to the in vivo situation, we can hypothesize that, under hyperglycaemic conditions, glycation of membrane lipids may cause a significant change in the structure and stability of membrane proteins, which may affect the normal functioning of membranes and therefore of cells.  相似文献   

10.
Lipid rafts, defined as cholesterol- and sphingolipid-rich domains, provide specialized lipid environments understood to regulate the organization and function of many plasma membrane proteins. Growing evidence of their existence, protein cargo, and regulation is based largely on the study of isolated lipid rafts; however, the consistency and validity of common isolation methods is controversial. Here, we provide a detailed and direct comparison of the lipid and protein composition of plasma membrane "rafts" prepared from human macrophages by different methods, including several detergent-based isolations and a detergent-free method. We find that detergent-based and detergent-free methods can generate raft fractions with similar lipid contents and a biophysical structure close to that previously found on living cells, even in cells not expressing caveolin-1, such as primary human macrophages. However, important differences between isolation methods are demonstrated. Triton X-100-resistant rafts are less sensitive to cholesterol or sphingomyelin depletion than those prepared by detergent-free methods. Moreover, we show that detergent-based methods can scramble membrane lipids during the isolation process, reorganizing lipids previously in sonication-derived nonraft domains to generate new detergent-resistant rafts. The role of rafts in regulating the biological activities of macrophage plasma membrane proteins may require careful reevaluation using multiple isolation procedures, analyses of lipids, and microscopic techniques.  相似文献   

11.
Waters EK  Morrissey JH 《Biochemistry》2006,45(11):3769-3774
Integral membrane proteins, which include many cellular effector proteins and drug targets, can be difficult to produce, purify, and manipulate. Although the isolated ectodomains of many membrane proteins can be expressed as water soluble proteins, biological activity is frequently lost when these proteins are released from the membrane surface. An example is tissue factor, the integral membrane protein that triggers the blood clotting cascade and for which membrane anchoring is essential. Its isolated ectodomain (soluble tissue factor) can be expressed with high yield in bacteria but is orders of magnitude less active than the intact, membrane-anchored protein. We now report full restoration of biological activity to the isolated tissue factor ectodomain via the engineering of a hexahistidine tag onto its C-terminus and its use in combination with membrane bilayers containing nickel-chelating lipids. When soluble tissue factor was tethered to the membrane surface via such metal-chelating lipids, it bound factor VIIa with the same high affinity as wild-type tissue factor, and the resulting factor VIIa-tissue factor complexes supported factor X activation and factor VII autoactivation with essentially wild-type enzyme kinetic constants. Furthermore, when such bilayers were immobilized onto solid supports, they efficiently captured histidine-tagged soluble tissue factor directly from crude culture supernatants, with full biological activity, obviating the need for purification or laborious membrane reconstitution procedures. This strategy is rapid, efficient, scalable, and automatable and should be applicable to other integral membrane proteins, especially those with a single transmembrane domain. Applications include high-throughput screening of mutants or drugs, flow reactors, clinical assays, and point-of-care instrumentation.  相似文献   

12.
The separation of membrane protein complexes can be divided into two categories. One category, which is operated on a relatively large scale, aims to purify the membrane protein complex from membrane fractions while retaining its native form, mainly to characterize its nature. The other category aims to analyze the constituents of the membrane protein complex, usually on a small scale. Both of these face the difficulty of isolating the membrane protein complex without interference originating from the hydrophobic nature of membrane proteins or from the close association with membrane lipids. To overcome this difficulty, many methods have been employed. Crystallized membrane protein complexes are the most successful example of the former category. In these purification methods, special efforts are made in the steps prior to the column chromatography to enrich the target membrane protein complexes. Although there are specific aspects for each complex, the most popular method for isolating these membrane protein complexes is anion-exchange column chromatography, especially using weak anion-exchange columns. Another remarkable trend is metal affinity column chromatography, which purifies the membrane protein complex as an intact complex in one step. Such protein complexes contain subunit proteins which are genetically engineered so as to include multiple-histidine tags at carboxyl- or amino-termini. The key to these successes for multi-subunit complex isolation is the idea of keeping the expression at its physiological level, rather than overexpression. On the other hand, affinity purification using the Fv fragment, in which a Strep tag is genetically introduced, is ideal because this method does not introduce any change to the target protein. These purification methods supported by affinity interaction can be applied to minor membrane protein complexes in the membrane system. Isoelectric focusing (IEF) and blue native (BN) electrophoresis have also been employed to prepare membrane protein complexes. Generally, a combination of two or more chromatographic and/or electrophoretic methods is conducted to separate membrane protein complexes. IEF or BN electrophoresis followed by 2nd dimension electrophoresis serve as useful tools for analytical demand. However, some problems still exist in the 2D electrophoresis using IEF. To resolve such problems, many attempts have been made, e.g. introduction of new chaotropes, surfactants, reductants or supporting matrices. This review will focus in particular on two topics: the preparative methods that achieved purification of membrane protein complexes in the native (intact) form, and the analytical methods oriented to resolve the membrane proteins. The characteristics of these purification and analytical methods will be discussed along with plausible future developments taking into account the nature of membrane protein complexes.  相似文献   

13.
Electron cryomicroscopy methods comprise a rapidly expanding field providing insights into the structure and function of biological macromolecules and their supramolecular assemblies. The 3.8 A resolution structure of the membrane protein aquaporin, a view of the herpesvirus capsid at 8.5 A and the 10 A resolution structure of the spliceosomal U1 small nuclear ribonucleoprotein complex are three outstanding examples emphasizing the versatility of this technique.  相似文献   

14.
Single particle electron microscopy (EM) is an increasingly important tool for the structural analysis of macromolecular complexes. The main advantage of the technique over other methods is that it is not necessary to precede the analysis with the growth of crystals of the sample. This advantage is particularly important for membrane proteins and large protein complexes where generating crystals is often the main barrier to structure determination. Therefore, single particle EM can be employed with great utility in the study of large membrane protein complexes. Although the construction of atomic resolution models by single particle EM is possible in theory, currently the highest resolution maps are still limited to approximately 7-10A resolution and 15-30 A resolution is more typical. However, by combining single particle EM maps with high-resolution models of subunits or subcomplexes from X-ray crystallography and NMR spectroscopy it is possible to build up an atomic model of a macromolecular assembly. Image analysis procedures are almost identical for micrographs of soluble protein complexes and detergent solubilized membrane protein complexes. However, electron microscopists attempting to prepare specimens of a membrane protein complex for imaging may find that these complexes require different handling than soluble protein complexes. This paper seeks to explain how high-quality specimen grids of membrane protein complexes may be prepared to allow for the determination of their structure by EM and image analysis.  相似文献   

15.
The structural and functional integrity of biological membranes is vital to life. The interplay of lipids and membrane proteins is crucial for numerous fundamental processes ranging from respiration, photosynthesis, signal transduction, solute transport to motility. Evidence is accumulating that specific lipids play important roles in membrane proteins, but how specific lipids interact with and enable membrane proteins to achieve their full functionality remains unclear. X-ray structures of membrane proteins have revealed tight and specific binding of lipids. For instance, cardiolipin, an anionic phospholipid, has been found to be associated to a number of eukaryotic and prokaryotic respiratory complexes. Moreover, polar and septal accumulation of cardiolipin in a number of prokaryotes may ensure proper spatial segregation and/or activity of proteins. In this review, we describe current knowledge of the functions associated with cardiolipin binding to respiratory complexes in prokaryotes as a frame to discuss how specific lipid binding may tune their reactivity towards quinone and participate to supercomplex formation of both aerobic and anaerobic respiratory chains. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

16.
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.  相似文献   

17.
The complexities of X-ray crystallography and NMR spectroscopy for large protein complexes, and the comparative ease of approaches such as electron microscopy mean that low-resolution structures are often available long before their atomic resolution equivalents. To help bridge this gap in knowledge, we present 3SOM: an approach for finding the best fit of atomic resolution structures into lower-resolution density maps through surface overlap maximization. High-resolution templates (i.e. partial structures or models for multi-subunit complexes) and targets (lower-resolution maps) are initially represented as iso-surfaces. The latter are used first in a fast search for transformations that superimpose a significant portion of the target surface onto the template surface, which is quantified as surface overlap. The vast search space is reduced by considering key vectors that capture local surface information. The set of transformations with the highest surface overlap scores are then re-ranked by using more sophisticated scores including cross-correlation. We give a number of examples to illustrate the efficiency of the method and its restrictions. For targets for which partial complexes are available, the speed and performance of the method make it an attractive complement to existing methods, as many different hypotheses can be tested quickly on a single processor.  相似文献   

18.
Cell polarity plays an important role in a wide range of biological processes in plant growth and development.Cell polarity is manifested as the asymmetric distribution of molecules,for example,proteins and lipids,at the plasma membrane and inside of a cell.Here,we summarize a few polarized proteins that have been characterized in plants and we review recent advances towards understanding the molecular mechanism for them to polarize at the plasma membrane.Multiple mechanisms,including membrane trafficking,cytoskeletal activities,and protein phosphorylation,and so forth define the polarized plasma membrane domains.Recent discoveries suggest that the polar positioning of the proteo-lipid membrane domain may instruct the formation of polarity complexes in plants.In this review,we highlight the factors and regulators for their functions in establishing the membrane asymmetries in plant development.Furthermore,we discuss a few outstanding questions to be addressed to better understand the mechanisms by which cell polarity is regulated in plants.  相似文献   

19.
The electrostatic properties of biological membranes can be described by three parameters: the transmembrane potential, the membrane surface potential, and the membrane dipole potential. The first two are well characterized in terms of their magnitudes and biological effects. The dipole potential, however, is not well characterized. Various methods to measure the membrane dipole potential indirectly yield different values, and there is not even agreement on the source of the membrane dipole moment. This ambiguity impedes investigations into the biological effects of the membrane dipole moment, which should be substantial considering the large interfacial fields with which it is associated. Electrostatic analysis of phosphatidylcholine lipid membranes with the atomic force microscope reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipids. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internal membrane dipole potential. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported phosphatidylcholine membranes. This new ability to quantitatively measure the membrane dipole moment in a noninvasive manner with nanometer scale spatial resolution will be useful in identifying the biological effects of the dipole potential.  相似文献   

20.
Eisosomes, large protein complexes that are predominantly composed of BAR-domain-containing proteins Pil1 and its homologs, are situated under the plasma membrane of ascomycetes. A successful targeting of Pil1 onto the future site of eisosome accompanies maturation of eisosome. During or after recruitment, Pil1 undergoes self-assembly into filaments that can serve as scaffolds to induce membrane furrows or invaginations. Although a consequence of the invagination is likely to redistribute particular proteins and lipids to a different location, the precise physiological role of membrane invagination and eisosome assembly awaits further investigation. The present review summarizes recent research findings within the field regarding the detailed structural and functional significance of Pil1 on eisosome organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号