首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that peripheral lymph node-resident retinoic acid receptor-related orphan receptor γt(+) NK1.1(-) invariant NKT (iNKT) cells produce IL-17A independently of IL-6. In this study, we show that the concomitant presence of IL-1 and IL-23 is crucial to induce a rapid and sustained IL-17A/F and IL-22 response by these cells that requires TCR-CD1d interaction and partly relies on IL-23-mediated upregulation of IL-23R and IL-1R1 expression. We further show that IL-1 and IL-23 produced by pathogen-associated molecular pattern-stimulated dendritic cells induce this response from NK1.1(-) iNKT cells in vitro, involving mainly TLR2/4-signaling pathways. Finally, we found that IL-17A production by these cells occurs very early and transiently in vivo in response to heat-killed bacteria. Overall, our study indicates that peripheral lymph node NK1.1(-) iNKT cells could be a source of innate Th17-related cytokines during bacterial infections and supports the hypothesis that they are able to provide an efficient first line of defense against bacterial invasion.  相似文献   

2.
Interleukin (IL)-17A plays an important role in host defense against a variety of pathogens and may also contribute to the pathogenesis of autoimmune diseases. However, precise identification and quantification of the cells that produce this cytokine in vivo have not been performed. We generated novel IL-17A reporter mice to investigate expression of IL-17A during Klebsiella pneumoniae infection and during experimental autoimmune encephalomyelitis, conditions previously demonstrated to potently induce IL-17A production. In both settings, the majority of IL-17A was produced by non-CD4(+) T cells, particularly γδ T cells, but also invariant NKT cells and other CD4(-)CD3ε(+) cells. As measured in dual-reporter mice, IFN-γ-producing Th1 cells greatly outnumbered IL-17A-producing Th17 cells throughout both challenges. Production of IL-17A by cells from unchallenged mice or by non-T cells under any condition was not evident. Administration of IL-1β and/or IL-23 elicited rapid production of IL-17A by γδ T cells, invariant NKT cells and other CD4(-)CD3ε(+) cells in vivo, demonstrating that these cells are poised for rapid cytokine production and likely comprise the major sources of this cytokine during acute immunologic challenges.  相似文献   

3.
The common gamma-chain cytokine, IL-21, is produced by CD4(+) T cells and mediates potent effects on a variety of immune cells including NK, T, and B cells. NKT cells express the receptor for IL-21; however, the effect of this cytokine on NKT cell function has not been studied. We show that IL-21 on its own enhances survival of NKT cells in vitro, and IL-21 increases the proliferation of NKT cells in combination with IL-2 or IL-15, and particularly with the CD1d-restricted glycosphingolipid Ag alpha-galactosylceramide. Similar to its effects on NK cells, IL-21 enhances NKT cell granular morphology, including granzyme B expression, and some inhibitory NK receptors, including Ly49C/I and CD94. IL-21 also enhanced NKT cell cytokine production in response to anti-CD3/CD28 in vitro. Furthermore, NKT cells may be subject to autocrine IL-21-mediated stimulation because they are potent producers of this cytokine following in vitro stimulation via CD3 and CD28, particularly in conjunction with IL-12 or following in vivo stimulation with alpha-galactosylceramide. Indeed, NKT cells produced much higher levels of IL-21 than conventional CD4 T cells in this assay. This study demonstrates that NKT cells are potentially a major source of IL-21, and that IL-21 may be an important factor in NKT cell-mediated immune regulation, both in its effects on NK, T, and B cells, as well as direct effects on NKT cells themselves. The influence of IL-21 in NKT cell-dependent models of tumor rejection, microbial clearance, autoimmunity, and allergy should be the subject of future investigations.  相似文献   

4.
5.
IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.  相似文献   

6.
IL-23 and IL-17A regulate granulopoiesis through G-CSF, the main granulopoietic cytokine. IL-23 is secreted by activated macrophages and dendritic cells and promotes the expansion of three subsets of IL-17A-expressing neutrophil-regulatory T (Tn) cells; CD4(-)CD8(-)alphabeta(low), CD4(+)CD8(-)alphabeta(+) (Th17), and gammadelta(+) T cells. In this study, we investigate the effects of IL-17A on circulating neutrophil levels using IL-17R-deficient (Il17ra(-/-)) mice and Il17ra(-/-)Itgb2(-/-) mice that lack both IL-17R and all four beta(2) integrins. IL-17R deficiency conferred a reduction in neutrophil numbers and G-CSF levels, as did Ab blockade against IL-17A in wild-type mice. Bone marrow transplantation revealed that IL-17R expression on nonhemopoietic cells had the greatest effects on regulating blood neutrophil counts. Although circulating neutrophil numbers were reduced, IL-17A expression, secretion, and the number of IL-17A-producing Tn cells were elevated in Il17ra(-/-) and Il17ra(-/-)Itgb2(-/-) mice, suggesting a negative feedback effect through IL-17R. The negative regulation of IL-17A-producing T cells and IL-17A and IL-17F gene expression through the interactions of IL-17A or IL-17F with IL-17R was confirmed in splenocyte cultures in vitro. We conclude that IL-17A regulates blood neutrophil counts by inducing G-CSF production mainly in nonhemopoietic cells. IL-17A controls the expansion of IL-17A-producing Tn cell populations through IL-17R.  相似文献   

7.
Glucocorticoid-induced TNF receptor (GITR) is known to provide costimulatory signals to CD4+CD25- and CD4+CD25+ T cells during immune responses in vivo. However, the functional roles of GITR expressed on NKT cells have not been well characterized. In this study, we have explored the functions of GITR as a costimulatory factor on NKT cells. GITR was found to be constitutively expressed on NKT cells and its expression was enhanced by TCR signals. GITR engagement using DTA-1, an agonistic mAb against GITR, in the presence of TCR signals, augmented IL-2 production, the expression of activation markers, cell cycle progression, and the nuclear translocations of NF-kappaB p50 and p65. Furthermore, GITR engagement enhanced the production of IL-4, IL-10, IL-13, and IFN-gamma by NKT cells and the expression level of phosphorylated p65 in NKT cells in the presence of TCR engagement, indicating that GITR provides costimulatory signals to NKT cells. The costimulatory effects of GITR on NKT cells were comparable to those of CD28 in terms of cytokine production. Moreover, the coinjection of DTA-1 and alpha-galactosylceramide into B6 mice induced more IL-4 and IFN-gamma production than the coinjection of control mAbs and alpha-galactosylceramide. In addition, the adoptive transfer of DTA-1-pretreated NKT cells into CD1d(-/-) mice attenuated hypersensitivity pneumonitis more than control IgG pretreated NKT cells in these mice. These findings demonstrate that GITR engagement on NKT cells modulates immune responses in hypersensitivity pneumonitis in vivo. Taken together, our findings suggest that GITR engagement costimulates NKT cells and contributes to the regulation of immune-associated disease processes in vivo.  相似文献   

8.
Invariant Valpha14(+) NKT cells are a specialized CD1-reactive T cell subset implicated in innate and adaptive immunity. We assessed whether Valpha14(+) NKT cells participated in the immune response against enteric Listeria monocytogenes infection in vivo. Using CD1d tetramers loaded with the synthetic lipid alpha-galactosylceramide (CD1d/alphaGC), we found that splenic and hepatic Valpha14(+) NKT cells in C57BL/6 mice were early producers of IFN-gamma (but not IL-4) after L. monocytogenes infection. Adoptive transfer of Valpha14(+) NKT cells derived from TCRalpha degrees Valpha14-Jalpha18 transgenic (TCRalpha degrees Valpha14Tg) mice into alymphoid Rag(null) gamma(c)(null) mice demonstrated that Valpha14(+) NKT cells were capable of providing early protection against enteric L. monocytogenes infection with systemic production of IFN-gamma and reduction of the bacterial burden in the liver and spleen. Rechallenge experiments demonstrated that previously immunized wild-type and Jalpha18null mice, but not TCRalpha(null) or TCRalpha(null) Valpha14Tg mice, were able to mount adaptive responses to L. monocytogenes. These data demonstrate that Valpha14(+) NKT cells are able to participate in the early response against enteric L. monocytogenes through amplification of IFN-gamma production, but are not essential for, nor capable of, mediating memory responses required to sterilize the host.  相似文献   

9.
Activated natural killer T (NKT) cells produce a broad range of cytokines, including IL-4 and IFN-γ, that determine immunomodulatory functions in various animal models. In this report, we show that a well-known proinflammatory cytokine, IL-17 is also produced by a distinct population of NKT cells upon TCR stimulation. Administration of α-galactosylceramide (α-GalCer), a strong agonist of NKT cells, induces rapid IL-17 production by a small population of NKT cells, mostly belonging to a population different from that of IL-4- and IFN-γ-producing NKT cells. IL-17-producing NKT cells showed unresponsiveness after stimulation of α-GalCer as conventional NKT cells. During airway inflammation induced by pulmonary activation of NKT cells with α-GalCer, IL-17 contributes to the infiltration of neutrophils into the airway but has no effect on airway hyperreactivity (AHR). These results indicate that TCR stimulation induces IL-17 expression by a novel population of NKT cells and may help to explain diverse NKT cell functions.  相似文献   

10.
A prominent subset of the hepatic innate immune system is alpha-galactosylceramide (alphaGalCer)-reactive, (CD4(+) and CD4(-)CD8(-)) CD1d-restricted NKT cells. We investigated in C57BL/6 (B6) mice which hepatic cell type stimulates hepatic NKT cell activation. Surface expression of CD1d but not CD40, CD80, or CD86 costimulator molecules was detected in hepatocytes. Pulsed in vitro or in vivo with alphaGalCer, hepatocytes triggered IL-4 release by liver NKT cells but required exogenous IL-12 to trigger IFN-gamma release by NKT cells. Liver dendritic cells (DC) isolated from nontreated mice showed low surface expression of MHC, CD1d, and CD40, CD80, or CD86 costimulator molecules that were strikingly up-regulated after alphaGalCer injection. Although liver CD11c(+) DC displayed lower CD1d surface expression than hepatocytes, they were potent stimulators of IFN-gamma and IL-4 release by liver NKT when pulsed with alphaGalCer in vitro or in vivo. Liver DC are thus potent stimulators of proinflammatory cytokine release by NKT cells, are activated themselves in the process of NKT cell activation, and express an activated phenotype after the NKT cell population is eliminated following alphaGalCer stimulation.  相似文献   

11.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

12.
Tyrosine kinase 2 (Tyk2), a member of the JAK-signal transducer family, is involved in intracellular signaling triggered by various cytokines, including IL-23. We have recently reported that resident gammadelta T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23. In this study, we examined importance of Tyk2-mediated signaling in the IL-17 production by gammadelta T cells using Tyk2 deficient (-/-) mice. Gammadelta T cells in the peritoneal cavity of Tyk2(-/-) mice displayed effecter/memory phenotypes and TCR V repertoire similar to those in Tyk2(+/+) mice and produced comparable level of IL-17 to those in Tyk2(+/+) mice in response to PMA and ionomycin, indicating normal differentiation to IL-17-producing effectors in the absence of Tyk2-signaling. However, gammadelta T cells in Tyk2(-/-) mice produced less amount of IL-17 in response to IL-23 in vitro than those in Tyk2(+/+) mice. Similarly, gammadelta T cells in the peritoneal cavity of Tyk2(-/-) mice showed severely impaired IL-17 production after an i.p. infection with E. coli despite comparable level of IL-23 production to Tyk2(+/+) mice. As a consequence, Tyk2(-/-) mice showed a reduced infiltration of neutrophils and severely impaired bacterial clearance after Escherichia coli infection. These results indicate that Tyk2-signaling is critical for IL-23-induced IL-17 production by gammadelta T cells, which is involved in the first line of host defense by controlling neutrophil-mediated immune responses.  相似文献   

13.
NKT cells from C57Bl/6 mice are known to be the initial cellular source of IL-4 that acts as a trigger for Th2 cell differentiation. CC-chemokine ligand 2 (CCL2) has been described as an initial stimulator of IL-4 production by these cells; however, IL-4 was not produced by NKT cells from BALB/c mice even when Th2 cell responses were established in these mice. In this study, we found a new pathway for CCL2-associated Th2 cell generation in BALB/c mice. Splenic T cells from BALB/c mice produced IL-4 in response to CCL2 stimulation. However, IL-4 production was not seen in cultures of splenic T cells from CD1-/- mice (BALB/c origin), whereas, in the presence of CCL2, splenic T cells from CD1-/- mice produced IL-4 when NKT cells from wild-type mice were added. CCL2 induced IL-4 in cultures of NKT cells cocultured with naive T cells, but IL-4 was not produced by these cells cultured separately with CCL2. Interestingly, IL-4 was produced by naive T cells cocultured with NKT cells that were previously treated with CCL2 (CCL2-NKT cells). In addition, IL-4 was produced by naive T cells supplemented with a culture supernatant of CCL2-NKT cells. These results indicate that, through the production of a soluble factor(s) other than IL-4, NKT cells play a role in the CCL2-associated generation of Th2 cells.  相似文献   

14.
15.
16.
The recently delineated role for IL-23 in enhancing Th-17 activity suggests that regulation of its expression is distinct from that of IL-12. We hypothesized that independent TLR-mediated pathways are involved in the regulation of IL-12 and IL-23 production by myeloid-derived dendritic cells (DCs). The TLR 2 ligand, lipoteichoic acid (LTA), the TLR 4 ligand, LPS, and the TLR 7/8 ligand, resimiquod (R848), induced production of IL-23 by DCs. None of these TLR ligands alone induced significant IL-12 production, except when combined with IFN-gamma or other TLR ligands. Notably, IL-23 production in response to single TLR ligands was inhibited by IL-4. DCs treated with single TLR agonists induced IL-17A production by allogeneic and Ag-specific memory CD4(+) T cells, an effect that was abrogated by IL-23 neutralization. Moreover, these DCs stimulated IL-17A production by tumor peptide-specific CD8(+) T cells. In contrast, DCs treated with dual signals induced naive and memory Th1 responses and enhanced the functional avidity of tumor-specific CD8(+) T cells. These results indicate that distinct microbial-derived stimuli are required to drive myeloid DC commitment to IL-12 or IL-23 production, thereby differentially polarizing T cell responses.  相似文献   

17.
The binding of IL-18 to IL-18Rα induces both proinflammatory and protective functions during infection, depending on the context in which it occurs. IL-18 is highly expressed in the liver of wild-type (WT) C57BL/6 mice following lethal infection with highly virulent Ixodes ovatus ehrlichia (IOE), an obligate intracellular bacterium that causes acute fatal toxic shock-like syndrome. In this study, we found that IOE infection of IL-18Rα(-/-) mice resulted in significantly less host cell apoptosis, decreased hepatic leukocyte recruitment, enhanced bacterial clearance, and prolonged survival compared with infected WT mice, suggesting a pathogenic role for IL-18/IL-18Rα in Ehrlichia-induced toxic shock. Although lack of IL-18R decreased the magnitude of IFN-γ producing type-1 immune response, enhanced resistance of IL-18Rα(-/-) mice against Ehrlichia correlated with increased proinflammatory cytokines at sites of infection, decreased systemic IL-10 production, increased frequency of protective NKT cells producing TNF-α and IFN-γ, and decreased frequency of pathogenic TNF-α-producing CD8(+) T cells. Adoptive transfer of immune WT CD8(+) T cells increased bacterial burden in IL-18Rα(-/-) mice following IOE infection. Furthermore, rIL-18 treatment of WT mice infected with mildly virulent Ehrlichia muris impaired bacterial clearance and enhanced liver injury. Finally, lack of IL-18R signal reduced dendritic cell maturation and their TNF-α production, suggesting that IL-18 might promote the adaptive pathogenic immune responses against Ehrlichia by influencing T cell priming functions of dendritic cells. Together, these results suggested that the presence or absence of IL-18R signals governs the pathogenic versus protective immunity in a model of Ehrlichia-induced immunopathology.  相似文献   

18.
TGF-β and IL-6 induce Th17 differentiation, and IL-23 is required for expansion and maintenance of Th17 cells. Recently, it was shown that IL-6 up-regulates IL-23R mRNA in naive CD4+ T cells and therefore IL-6 and IL-23 synergistically promote Th17 differentiation. However, the molecular mechanism whereby IL-6 and IL-23 induce Th17 differentiation and the relevance to TGF-β remain unknown. Here, we found that IL-6 up-regulated IL-23R mRNA expression, and IL-6 and IL-23 synergistically augmented its protein expression. The combination induced Th17 differentiation, and TGF-β1 further enhanced it. IL-6 augmented endogenous TGF-β1 mRNA expression, whereas the amount of TGF-β produced was not enough to induce Th17 differentiation by IL-6 alone. However, unexpectedly, the up-regulation of IL-23R and induction of Th17 differentiation by IL-6 and IL-23 were almost completely inhibited by anti-TGF-β. These results suggest that the induction of IL-23R and Th17 differentiation by IL-6 and IL-23 is mediated through endogenously produced TGF-β.  相似文献   

19.
20.
There is growing evidence that the complement activation product C5a positively or negatively regulates inflammatory functions. The studies presented here report that C5a exerts anti-inflammatory effects by altering production of the cytokines IL-17A and IL-23 during endotoxic shock in young adult male C57BL/6J mice and has similar effects on macrophages from the same mice. IL-17A and IL-23 both appeared in plasma during endotoxemia, and their neutralization improved survival. The relevant sources of IL-17A during endotoxemia were not CD4(+) cells, γδ T cells, or NK cells but CD11b(+)F4/80(+) macrophages. The addition in vitro of C5a to lipopolysaccharide-activated peritoneal macrophages dose dependently antagonized the production of IL-17A (IC(50), 50-100 nM C5a) and IL-23 (IC(50), 10 nM C5a). This suppression required the receptor C5aR, but was independent of the second C5a receptor, C5L2. Genetic absence of C5aR was associated with much higher levels of IL-17A and IL-23 during endotoxic shock. Mechanistically, C5a mediated its effects on the IL-17A/IL-23 axis in a 2-step process. C5a caused activation of the PI3K-Akt and MEK1/2-ERK1/2 pathways, resulting in induction of IL-10, which powerfully inhibited production of IL-17A and IL-23. These data identify previously unknown mechanisms by which the anaphylatoxin C5a limits acute inflammation and antagonizes the IL-17A/IL-23 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号