首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The baboon endogenous retrovirus (BaEV) belongs to a large, widely dispersed interference group that includes the RD114 feline endogenous virus and primate type D retroviruses. Recently, we and another laboratory independently cloned a human receptor for these viruses and identified it as the human sodium-dependent neutral amino acid transporter type 2 (hASCT2). Interestingly, mouse and rat cells are efficiently infected by BaEV but only become susceptible to RD114 and type D retroviruses if the cells are pretreated with tunicamycin, an inhibitor of protein N-linked glycosylation. To investigate this host range difference, we cloned and analyzed NIH Swiss mouse ASCT2 (mASCT2). Surprisingly, mASCT2 did not mediate BaEV infection, which implied that mouse cells might have an alternative receptor for this virus. In addition, elimination of the two N-linked oligosaccharides from mASCT2 by mutagenesis, as substantiated by protein N-glycosidase F digestions and Western immunoblotting, did not enable it to function as a receptor for RD114 or type D retroviruses. Based on these results, we found that the related ASCT1 transporters of humans and mice are efficient receptors for BaEV but are relatively inactive for RD114 and type D retroviruses. Furthermore, elimination of the two N-linked oligosaccharides from extracellular loop 2 of mASCT1 by mutagenesis enabled it to function as an efficient receptor for RD114 and type D retroviruses. Thus, we infer that the tunicamycin-dependent infection of mouse cells by RD114 and type D retroviruses is caused by deglycosylation of mASCT1, which unmasks previously buried sites for viral interactions. In contrast, BaEV efficiently employs the glycosylated forms of mASCT1 that occur normally in untreated mouse cells.  相似文献   

2.
BACKGROUND: Wild-type RD114 virus is capable of generating syncytia during its replication, and it is believed that cell-free viruses direct the fusion of neighboring cells. The RD114 envelope (Env) that mediates this fusion event is now widely used to pseudotype retroviral and lentiviral vectors in gene therapy. Indeed, vectors pseudotyped with RD114 Env are very efficient to transfer genes into human hematopoietic cells, and they are resistant to human complement inactivation. In this study, we have tested the potential of RD114-pseudotyped vectors produced from the FLYRD18 packaging cell line to induce syncytia. METHODS: RD114-pseudotyped vectors produced from the FLYRD18 packaging cells were added on tumor cell lines, and the formation of syncytia was assessed by microscopy after cell fixation and methylene blue staining. The kinetics of syncytium formation was analyzed by time-lapse microscopy. Finally, the cytotoxic effect of RD114-pseudotyped vectors was measured by the MTT assay on tumor cells, and in combination with the TK/GCV strategy. RESULTS: We have found that these vectors were able to mediate cell-to-cell fusion of human tumor cell lines. A few hours after addition of the vector, cells started to aggregate to form syncytia that eventually evolved toward cell death 48 h postinfection. RD114-pseudotyped vectors were very efficient at killing human cancer cells, and they were also able to enhance dramatically the cytotoxic effect of the TK/GCV strategy. CONCLUSIONS: These findings indicate that RD114-pseudotyped vectors used alone, or in combination with a suicide gene therapy approach, have great potential for the treatment of cancer.  相似文献   

3.
The type D simian retroviruses cause immunosuppression in macaques and have been reported as a presumptive opportunistic infection in a patient with AIDS. Previous evidence based on viral interference has strongly suggested that the type D simian viruses share a common but unknown cell surface receptor with three type C viruses: feline endogenous virus (RD114), baboon endogenous virus, and avian reticuloendotheliosis virus. Furthermore, the receptor gene for these viruses has been mapped to human chromosome 19q13.1-13.2. We now report the isolation and characterization of a cell surface receptor for this group of retroviruses by using a human T-lymphocyte cDNA library in a retroviral vector. Swiss mouse fibroblasts (NIH 3T3), which are naturally resistant to RD114, were transduced with the retroviral library and then challenged with an RD114-pseudotyped virus containing a dominant selectable gene for puromycin resistance. Puromycin selection yielded 12 cellular clones that were highly susceptible to a beta-galactosidase-encoding lacZ(RD114) pseudotype virus. Using PCR primers specific for vector sequences, we amplified a common 2.9-kb product from 10 positive clones. Expression of the 2.9-kb cDNA in Chinese hamster ovary cells conferred susceptibility to RD114, baboon endogenous virus, and the type D simian retroviruses. The 2.9-kb cDNA predicted a protein of 541 amino acids that had 98% identity with the previously cloned human Na+-dependent neutral-amino-acid transporter Bo. Accordingly, expression of the RD114 receptor in NIH 3T3 cells resulted in enhanced cellular uptake of L-[3H]alanine and L-[3H]glutamine. RNA blot (Northern) analysis suggested that the RD114 receptor is widely expressed in human tissues and cell lines, including hematopoietic cells. The human Bo transporter gene has been previously mapped to 19q13.3, which is closely linked to the gene locus of the RD114 receptor.  相似文献   

4.
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.  相似文献   

5.
K J Dunn  C C Yuan    D G Blair 《Journal of virology》1993,67(8):4704-4711
We have characterized the restriction mechanism for RD114 virus replication in embryonic feline cells (FeF). By comparing growth properties of the virus in FeF cells with its behavior in a fetal feline glial cell line (G355) permissive for RD114, we showed that both cell lines were readily infectible by virus grown in permissive cells and that no significant differences in viral integration or viral RNA expression could be detected. However, analysis of viral protein expression revealed differences in viral env gene processing in the two cell types. Envelope precursor pR85 was produced, but the expected processed gp70 product was detectable only in permissive (G355) cells. An envelope product of 85 kDa was packaged into virions produced by FeF cells, while virions produced by G355 cells contained the expected RD114 gp70. While the gp85 env-containing virions were infectious for permissive G355 cells, they were unable to infect FeF cells. The block to infection by the gp85-containing particles in FeF cells could be abrogated by treatment with the glycosylation inhibitor tunicamycin. Our results indicate that restriction of RD114 virus involves a novel mechanism dependent on two factors: altered glycosylation of the envelope to a gp85 form and an altered RD114 receptor in FeF cells.  相似文献   

6.
Retroviral core proteins, Gag and envelope (Env) glycoproteins are expressed from distinct cellular areas and therefore need to encounter to assemble infectious particles. The intrinsic cell localisation properties of either viral component or their capacity to mutually interact determines the assembly of infectious particles. Here, we address how Env determinants and cellular sorting proteins allow the Env derived from gamma retroviruses, murine leukemia virus (MLV) and RD114, to travel to or from late endosomes (LE), which may represent the Env assembly site of retroviruses in some cells. The individual expression of MLV Env resulted in its accumulation in LE in contrast to RD114 Env that required the presence of gamma retroviral Gag proteins. To discriminate between intrinsic intracellular Env localisation and gamma retroviral Gag/Env interactions in influencing Env viral incorporation, we studied Env assembly on heterologous lentiviral particles on which they are passively recruited. We found that an acidic cluster present at the C-terminus of the RD114 Env cytoplasmic tail determines its sub-cellular localisation and retrograde transport. Mutation of this motif induced late endosomal concentration of the RD114 Env, correlating with increased viral incorporation and infectivity. Reciprocally, the reinforcement of a poorly functional acidic motif in the MLV Env resulted in a marked decrease of its late endosomal localisation, leading to weakly infectious lentiviral particles with low Env densities. Finally, through upregulation versus downregulation of its cellular expression, we show that phosphofurin acidic-cluster-sorting protein 1 (PACS-1) controls the function of the RD114 Env acidic cluster, assigning to this cellular effector a crucial role in modulation of Env assembly of some retroviruses.  相似文献   

7.
Simian retrovirus (SRV) serotypes 1 to 5 are exogenous type D viruses causing immune suppression in macaque monkeys. These viruses exhibit receptor interference with each other, with two endogenous type D viruses of the langur (PO-1-Lu) and squirrel monkey, and with two type C retroviruses, feline endogenous virus (RD114/CCC) and baboon endogenous virus (BaEV), indicating that each utilizes the same cell surface receptor (M. A. Sommerfelt and R. A. Weiss, Virology 176:58-69, 1990). Vesicular stomatitis virus pseudotype particles bearing envelope glycoproteins of RD114, BaEV, and the seven SRV strains were employed to detect receptors expressed in human-rodent somatic cell hybrids segregating human chromosomes. The only human chromosome common to all the susceptible hybrids was chromosome 19. By using hybrids retaining different fragments of chromosome 19, a provisional subchromosomal localization of the receptor gene was made to 19q13.1-13.2. Antibodies previously reported to be specific to a BaEV receptor (L. Thiry, J. Cogniaux-Leclerc, R. Olislager, S. Sprecher-Goldberger, and P. Burkens, J. Virol. 48:697-708, 1983) did not block BaEV, RD114, or SRV pseudotypes or syncytia. Antibodies to known surface markers determined by genes mapped to chromosome 19 did not block virus-receptor interaction. The identity of the receptor remains to be determined.  相似文献   

8.
Oncoretrovirus vectors pseudotyped with the feline endogenous retrovirus (RD114) envelope protein produced by the FLYRD18 packaging cell line have previously been shown to transduce human hematopoietic progenitor cells with a greater efficiency than similar amphotropic envelope-pseudotyped vectors. In this report, we describe the production and efficient concentration of RD114-pseudotyped murine leukemia virus (MLV)-based vectors. Following a single round of centrifugation, vector supernatants were concentrated approximately 200-fold with a 50 to 70% yield. Concentrated vector stocks transduced prestimulated human CD34(+) (hCD34(+)) cells with approximately 69% efficiency (n = 7, standard deviation = 4.4%) using a single addition of vector at a low multiplicity of infection (MOI = 5). Introduction of transduced hCD34(+) cells into irradiated NOD/SCID recipients resulted in multilineage engraftment with long-term transgene expression. These data demonstrate that RD114-pseudotyped MLV-based vectors can be efficiently concentrated to high titers and that hCD34(+) cells transduced with concentrated vector stocks retain in vivo repopulating potential. These results highlight the potential of RD114-pseudotyped oncoretrovirus vectors for future clinical implementation in hematopoietic stem cell gene transfer.  相似文献   

9.
The 70S and 4S RNA components of a C-type oncornavirus, RD-114, released from a human rhabdomyosarcoma cell line (RD) after transplantation in a kitten, were analyzed for nucleotide constituents. Minor nucleotides were detected only in the 4S RNA populations, and two of these nucleotides were identified as 5,6-dihydro-UMP and pseudo-UMP. The base composition of the RD-114 70S RNA differs from that of the 70S RNA from RD-FeLV (the virus released from the RD cell line after deliberate infection with a feline leukemia virus).  相似文献   

10.
11.
Several low molecular weight proteins of endogenous type C viruses of the RD114/baboon group are compared with the gag gene translational products of endogenous type C viruses of murine origin. The p10 proteins of each virus group are shown to be immunologically and biochemically related, while the p12 proteins of RD114/baboon viruses are demonstrated to share antigenic determinants with murine viral p15. Moreover, highly type-specific phosphoproteins, p15 of RD114/baboon viruses and p12 of murine viruses, are shown to possess very similar biochemical properties. These findings, along with previous studies indicating immunologic cross-reactivity between their major internal antigens, p30, demonstrate that each of the gag gene-coded proteins of murine type C viruses has a analogue in viruses of the RD114/baboon group. The immunologic and biochemical relatedness of their gag gene translational products supports the concept of a common progenitor in the evolution of these endogenous viruses.  相似文献   

12.
An RNA-directed DNA polymerase was purified from baboon endogenous type-C virus by successive column chromatography on DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 8.0, a Mn2+ optimum of 1 mM, and a KCl optimum of 40 mM. The purified enzyme transcribes heteropolymeric regions of viral 60--70 S RNA isolated from different type-C viruses. The purified enzyme is immunologically related to a similarly purified polymerase from the cat endogenous type-C virus RD114.  相似文献   

13.
A glycosylated protein of approximately 70,000 daltons (gp70) from the surface of human peripheral blood T cells was immunoprecipitated by antisera to the baboon endogenous retrovirus (BEV-M7) and the serologically related feline endogenous retrovirus (RD114) but not by antisera to other retroviruses. Whereas preliminary absorption experiments were consistent with a possible viral specificity for this reaction, detailed biochemical and serologic characterization of the purified cellular protein suggested that it was not related to the gp70 of either M7 or RD114 viruses. The specificity of the reaction was further analyzed by assays of cellular gp70 antigenicity after exposure to exo- and endoglycosidases or trypsin and carbohydrate hapten inhibition studies. The results of these experiments were consistent with the interpretation that the glycoprotein was being recognized by antibody binding to the carbohydrate moiety of the molecule. These results provide an example of an antibody activity that could lead to inappropriate conclusions when sensitive radioimmunoprecipitation techniques are used for the biochemical analysis of antigenic systems. They emphasize the necessity of purifying cellular antigens as a prerequisite to determining the exact basis for a serologic reaction.  相似文献   

14.

Background  

The feline endogenous retrovirus RD114 is contained in the genome of cats. The virus may contaminate live canine vaccines based on cultured feline cells. The in vivo infectivity, acute and subacute pathogenicity, and viral proliferation of the RD114 virus were evaluated by experimental infection of dogs.  相似文献   

15.
Many coxsackievirus B isolates bind to human decay-accelerating factor (DAF) as well as to the coxsackievirus and adenovirus receptor (CAR). The first-described DAF-binding isolate, coxsackievirus B3 (CB3)-RD, was obtained during passage of the prototype strain CB3-Nancy on RD cells, which express DAF but very little CAR. CB3-RD binds to human DAF, whereas CB3-Nancy does not. To determine the molecular basis for the specific interaction of CB3-RD with DAF, we produced cDNA clones encoding both CB3-RD and CB3-Nancy and mutated each of the sites at which the RD and Nancy sequences diverged. We found that a single amino acid change, the replacement of a glutamate within VP3 (VP3-234E) with a glutamine residue (Q), conferred upon CB3-Nancy the capacity to bind DAF and to infect RD cells. Readaptation of molecularly cloned CB3-Nancy to RD cells selected for a new virus with the same VP3-234Q residue. In experiments with CB3-H3, another virus isolate that does not bind measurably to DAF, adaptation to RD cells resulted in a DAF-binding isolate with a single amino acid change within VP2 (VP2-138 N to D). Both VP3-234Q and VP2-138D were required for binding of CB3-RD to DAF. In the structure of the CB3-RD-DAF complex determined by cryo-electron microscopy, both VP3-234Q and VP2-138D are located at the contact site between the virus and DAF.  相似文献   

16.
BACKGROUND: Efficient gene transfer to bone marrow derived mesenchymal stem cells (MSC) would provide an important opportunity to express potent anticancer agents in the tumour microenvironment because of their contribution to the tumour stroma. METHODS: HIV-based lentiviral vectors were pseudotyped with four different envelope proteins; amphotropic murine leukaemia virus (ampho), murine leukaemia virus (10A1), feline endogenous virus (RD114), and the vesicular stomatitis virus glycoprotein (VSVG). These pseudotypes were examined for transduction efficiency in human bone marrow derived MSC. The effect of lentiviral expression of truncated soluble vascular endothelial growth factor decoy receptor (tsFlk-1) in MSC on growth of Raji cells was determined, both in vitro and in vivo. RESULTS: All lentiviral vectors produced significant levels of transduction at an multiplicity of infection (MOI) of 1, those bearing the RD114 envelope glycoprotein consistently produced higher transduction levels (mean 70 +/- 6%) compared with the other pseudotyped lentiviral vectors, although there was significant inter-donor variation. Stable transgene expression was achieved after multiple rounds of transduction with VSVG-pseudotyped particles, without alteration in the differentiative capacity of transduced cells. Co-injection of MSC stably expressing tsFlk-1 with Raji Burkitt's lymphoma cells significantly impaired subcutaneous tumour growth in immunodeficient mice when compared to controls where either unmanipulated MSC or GFP-expressing MSC were used. CONCLUSIONS: Human MSC are easily transduced by pseudotyped lentiviral particles but there is inter-donor variation in transduction efficiency. Gene-modified MSC expressing a gene of therapeutic potential can moderate growth of haematological malignancies.  相似文献   

17.
We isolated a strain of normal goat fibroblasts which was uniquely selective in that it allowed the replication of xenotropic murine leukemia virus but not polytropic recombinant murine leukemia virus. In addition, feline leukemia virus type A replication was severely diminished in these goat cells, whereas feline leukemia virus type B and feline endogenous RD114-CCC viruses replicated efficiently. No other known cells exhibit this pattern of virus growth restriction. These goat cells allow the study of xenotropic murine leukemia virus in mixtures which also contain recombinant murine leukemia virus and may be helpful in eliminating feline leukemia virus type which often coexists in feline sarcoma or leukemia virus mixtures with other feline leukemia virus types.  相似文献   

18.
Serial "blind" passages in human rhabdomyosarcoma (RD) cells of prototype viruses from each of the six immunotypes of the group B coxsackieviruses (CB) resulted in the isolation of intratypic variants of CB1, CB3, CB5, and CB6. Each variant virus strain acquired the capacity to agglutinate human erythrocytes and produce small plaques on HeLa cells, although their serological specificity remained unchanged. An alteration in VP1 mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was noted for CB3-RD. The CB3-RD variant was plaque purified on RD cells and studied for receptor interactions on both HeLa and RD cells. An attachment restriction appeared to exist for prototype CB3 on RD cells, whereas CB3-RD attached well to both cells. In attachment interference assays, HeLa cells saturated with CB3-RD blocked the attachment of CB3. In contrast, saturation of cells with CB1 (which shares a common receptor with parental CB3) failed to block the attachment of CB3-RD. This unidirectional receptor blockade suggested that a second site for the attachment of virions to receptors was acquired by the CB3-RD variant. Thus, more than one virus receptor specificity may be operative in the selection of host range virus mutants. The implications of this phenomenon as they may relate to pathogenesis are discussed.  相似文献   

19.
Novel retroviral protein expression constructs were designed to retain minimal retroviral sequences and to express dominant selectable markers by reinitiation of translation after expression of the viral genes. HT1080 cells were selected as producer cells for their ability to release high-titer viruses that are resistant to inactivation by human serum. Two HT1080-based packaging cell lines which produce Moloney murine leukemia virus cores with envelope glycoproteins of either amphotropic murine leukemia virus (FLYA13 line) or cat endogenous virus RD114 (FLYRD18 line) are described. Direct comparison with previous retroviral packaging systems indicated that 100-fold-higher titers of helper-free recombinant viruses were released by the FLYA13 and FLYRD18 lines.  相似文献   

20.
Racemic RS‐4‐(4‐hydroxyphenyl)‐2‐butanol (rhododendrol, RD) was used as a topical skin‐whitening agent until it was recently reported to induce leukoderma. We then showed that oxidation of RD with mushroom tyrosinase rapidly produces RD‐quinone, which is quickly converted to RD‐cyclic quinone and RD‐hydroxy‐p‐quinone. In this study, we examined whether either or both of the enantiomers of RD can be oxidized by human tyrosinase. Using a chiral HPLC column, racemic RD was resolved optically to R(?)‐RD and S(+)‐RD enantiomers. In the presence of a catalytic amount of l ‐dopa, human tyrosinase, which can oxidize l ‐tyrosine but not d ‐tyrosine, was found to oxidize both R(?)‐ and S(+)‐RD to give RD‐catechol and its oxidation products. S(+)‐RD was more effectively oxidized than l ‐tyrosine, while R(?)‐RD was less effective. These results support the notion that the melanocyte toxicity of RD depends on its tyrosinase‐catalyzed conversion to toxic quinones and the concomitant production of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号