首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Monoclonal antibodies were produced against the capsular antigen of Escherichia coli serotype K(A)30, using a mouse hybridoma system. The antibodies also recognised the chemically identical capsular polysaccharide produced by Klebsiella K20. Chemical modification of the K30 polysaccharide indicated that the glucuronic acid residues found in the E. coli K30 capsular antigen were important in the epitope recognised by these antibodies. Use of the antibodies as molecular probes revealed the presence of two discrete forms of the K30 antigen. One form was comprised of high molecular weight polysaccharide, present as a surface capsular layer. The second form of the antigen was of low molecular weight and was associated with lipopolysaccharide fractions from cell surface polysaccharide extracts. Separation of lipopolysaccharide fractions using gel chromatography in the presence of detergent showed that the low molecular weight K-antigenic fraction comigrated with a lipopolysaccharide lipid A core fraction present in encapsulated E. coli K30 bacteria but absent in acapsular mutants.  相似文献   

2.
A set of five Escherichia coli K phages has been isolated. These phages are adsorbed to and lyse the capsular forms of the host bacteria, whereas their spontaneous, acapsular mutants are not affected. All host strains are heavily encapsulated test strains for E. coli K antigens of the thermostable A type and they readily segregate acapsular mutants. In four of the phage-host systems, all secondary growth obtained was found to be acapsular. When tested for host-range mutants on 38 strains of E. coli and Klebsiella, less than one mutant per 10(5) plaque-forming units was found. No cross-reacting neutralizing antibodies were obtained when rabbits were immunized with the K phages. The latent periods (between 16 and 30 min) and average burst sizes (between 145 and 580) were determined by one-step growth experiments.  相似文献   

3.
Coliphage K30 lysates contain free and phage-associated forms of a bacteriophage-encoded capsule depolymerase (glycanase) enzyme, active against the serotype K30 capsular polysaccharide of Escherichia coli. The free glycanase has been purified to apparent homogeneity. The molecular weight of the enzyme was estimated at 450,000, and when heated in SDS at 100 degrees C, the enzyme dissociated into two subunits of 90,000 and 52,000. The glycanase enzyme was used as a reagent to reversibly degrade the capsular layers on cells of Escherichia coli O9:K30 and Klebsiella O1:K20. This treatment rendered these bacteria sensitive to their respective lipopolysaccharide-specific bacteriophages, coliphage O9-1 and Klebsiella phage O1-3. This novel approach facilitated isolation of lipopolysaccharide O antigen side chain deficient mutants which retained the ability to synthesize the capsule. The response of defined mutants, O+:K-, O-:K+, and O-:K-, to exposure to nonimmune rabbit serum was measured. Results showed that the primary barrier against complement-mediated serum killing in both Escherichia coli O9:K30 and Klebsiella O1:K20 was the O antigen side chains of the lipopolysaccharide molecules. In both strains, the capsule played no role in the determination of serum resistance.  相似文献   

4.
5.
We studied the reactivity of 66 anti-Escherichia coli B/r porin monoclonal antibodies (MAbs) with several E. coli and Salmonella typhimurium strains. Western immunoblots showed complete immunological cross-reactivity between E. coli B/r and K-12; among 34 MAbs which recognized porin in immunoblots of denatured outer membranes of E. coli B/r, all reacted with OmpF in denatured outer membranes of E. coli K-12. Extensive reactivity, although less than that for strain B/r (31 of 34 MAbs), occurred for porin from a wild-type isolate, E. coli O8:K27. Only one of the MAbs reacted with porin in denatured outer membranes of S. typhimurium. Even with immunochemical amplification of the Western immunoblot technique, only six MAbs recognized S. typhimurium porin (OmpD), demonstrating that there is significant immunological divergence between the porins of these species. Antibody binding to the bacterial surface, which was analyzed by cytofluorimetry, was strongly influenced by lipopolysaccharide (LPS) structure. An intact O antigen, as in E. coli O8:K27, blocked adsorption of all 20 MAbs in the test panel. rfa+ E. coli K-12, without an O antigen but with an intact LPS core, bound seven MAbs. When assayed against a series of rfa E. coli K-12 mutants, the number of MAbs that recognized porin surface epitopes increased sequentially as the LPS core became shorter. A total of 17 MAbs bound porin in a deep rough rfaD strain. Similar results were obtained with S. typhimurium. None of the anti-E. coli B/r porin MAbs adsorbed to a smooth strain, but three antibodies recognized porin on deep rough (rfaF, rfaE) mutants. These data define six distinct porin surface epitopes that are shielded by LPS from reaction with antibodies.  相似文献   

6.
抗大肠埃希氏菌K88ab,K88ac和K88ad特异单克隆抗体   总被引:6,自引:0,他引:6  
李毅  刘秀梵 《微生物学报》1989,29(5):348-353
A panel of twelve hybridoma cell lines, secreting specific antibodies to K88 adhesin antigens of enterotoxigenic Escherichia coli (ETEC) were established from eight separate fusions between mouse myeloma cell line Sp 2/0-Ag-14 and spleen cells from mice immunized with purified K88 antigens. Among the 12 monoclonal antibodies (MCA), K-A, K-35, K-11, and K-15 were K88a specific and reacted with all K88 adhesin bearing Escherichia coli strains tested, whatever K88ab, K88ac or K88ad they might be, as shown either in enzyme-linked immunosorbent assay (ELISA) or in direct agglutination test, whereas K32, K-4, and K-3 were specific for G88ab, K88ac, and K88ad respectively. The antigen patterns of 33 K88 bearing Escherichia coli strains covering 3 serotypes of K88ab, K88ac, and K88ad were analyzed by the use of these MCAs. The preliminary results showed that all Escherichia strains with the same serotype of K88 antigen shared at least one common type-specific antigenic determinant, that K88ad and K88ac strains enjoyed one common antigenic determinant that did not exist on K88ab strains, and that there were a few K88 antigenic determinants that appeared only on limited Escherichia coli strains of the same K88 serotype.  相似文献   

7.
With the exception of the polysialic acid capsule (K1 antigen), little is known about other virulence factors needed for systemic infection by Escherichia coli K1, the leading cause of Gram-negative neonatal meningitis in humans. In this work, the functional genomics method of signature-tagged mutagenesis (STM) was adapted to E. coli K1 and the infant-rat model to identify non-capsule virulence genes. Validation of the method was demonstrated by the failure to recover a reconstructed acapsular mutant from bacterial pools used to systemically infect 5-day-old rats. Three new genes required for systemic disease were identified from a total of 192 mutants screened by STM (1.56% hit rate). Gut colonization, Southern blot hybridization, mixed-challenge infection, and DNA sequence analyses showed that the attenuating defects in the mutants were associated with transposon insertions in rfaL (O antigen ligase), dsbA (thiol:disulfide oxidoreductase), and a new gene, puvA (previously unidentified virulence gene A), with no known homologues. The results indicate the ability of STM to identify novel systemic virulence factors in E. coli K1.  相似文献   

8.
A series of isogenic mutants lacking either the O1 (O-:K66) or K66 (O1:K-) antigens or both (O-:K-), some of which had additional defects in their LPS core polysaccharide was used to examine the interaction between polymorphonuclear leucocytes (PMNLs) and K. pneumoniae serotype O1:K66. In the absence of serum complement, only a O-:K- strain with a deep rough LPS chemotype elicited a PMNL-dependent chemiluminescent (CL) response. However, following opsonization of the non-capsulated strains by complement, the largest CL response was to the O1:K- mutant. This mutant also activated and bound more complement C3 than any of the other encapsulated or non-capsulated strains examined. Despite the surface exposure of smooth and rough LPS in the encapsulated parent and mutant strains, the K66 antigen reduced the binding of C3 and prevented PMNL activation. Both anti-LPS and anti-K66 antibodies, however, stimulated a PMNL-dependent CL response to the K66 bearing strains.  相似文献   

9.
In Escherichia coli K-12, RcsC and RcsB are thought to act as the sensor and effector components, respectively, of a two-component regulatory system which regulates expression of the slime polysaccharide colanic acid (V. Stout and S. Gottesman, J. Bacteriol. 172:659-669, 1990). Here, we report the cloning and DNA sequence of a 4.3-kb region containing rcsC and rcsB from E. coli O9:K30:H12. This strain does not produce colanic acid but does synthesize a K30 (group I) capsular polysaccharide. The rcsB gene from E. coli K30 (rcsBK30) is identical to the rcsB gene from E. coli K-12 (rcsBK-12). rcsCK30 has 16 nucleotide changes, resulting in six amino acid changes in the predicted protein. To examine the function of the rcs regulatory system in expression of the K30 capsular polysaccharide, chromosomal insertion mutations were constructed in E. coli O9:K30:H12 to independently inactivate rcsBK30 and the auxiliary positive regulator rcsAK30. Strains with these mutations maintained wild-type levels of K30 capsular polysaccharide expression and still produced a K30 capsule, indicating that the rcs system is not essential for expression of low levels of the group I capsular polysaccharide in lon+ E. coli K30. However, K30 synthesis is increased by introduction of a multicopy plasmid carrying rcsBK30. K30 polysaccharide expression is also markedly elevated in an rcsBK30-dependent fashion by a mutation in rcsCK30, suggesting that the rcs system is involved in high levels of synthesis. To determine whether the involvement of the rcs system in E. coli K30 expression is typical of group I (K antigen) capsules, multicopy rcsBK30 was introduced into 22 additional strains with structurally different group I capsules. All showed an increase in mucoid phenotype, and the polysaccharides produced in the presence and absence of multicopy rcsBK30 were examined. It is has been suggested that E. coli strains with group I capsules can be subdivided based on K antigen structure. For the first time, we show that strains with group I capsules can also be subdivided by the ability to produce colanic acid. Group IA contains capsular polysaccharides (including K30) with repeating-unit structures lacking amino sugars, and expression of group IA capsular polysaccharides is increased by multicopy rcsBK30. Group IB capsular polysaccharides all contain amino sugars. In group IB strains, multicopy rcsBK30 activates synthesis of colanic acid.  相似文献   

10.
The group 1 K30 antigen from Escherichia coli (O9a:K30) is present on the cell surface as both a capsular structure composed of high-molecular-weight K30 polysaccharide and as short K30 oligosaccharides linked to lipid A-core in a lipopolysaccharide molecule (K30LPS). To determine the molecular processes that are responsible for the two forms of K antigen, the 16 kb chromosomal cps region has been characterized. This region encodes 12 gene products required for the synthesis, polymerization and translocation of the K30 antigen. The gene products include four glycosyltransferases responsible for synthesis of the K30 repeat unit; a PST (1) exporter (Wzx), required to transfer lipid-linked K30 units across the plasma membrane to the periplasmic space; and a K30-antigen polymerase (Wzy). These gene products are typical of those seen in O-antigen biosynthesis gene clusters and they interact with the lipopolysaccharide translocation pathway to express K30LPS on the cell surface. The same gene products also provide the biosynthetic intermediates for the capsule assembly pathway, although they are not in themselves sufficient for synthesis of the K30 capsule. Three additional genes, wza, wzb and wzc, encode homologues to proteins that are encoded by gene clusters involved in expression of a variety of bacterial exopolysaccharides. Mutant analysis indicates that Wza and Wzc are required for wild-type surface expression of the capsular structure but are not essential for polymerization and play no role in the translocation of K30LPS. These surface expression components provide the key feature that distinguishes the assembly systems for O antigens and capsules.  相似文献   

11.
Chemical analyses of the carbohydrate composition of lipopolysaccharides (LPS) from a number of LPS mutants were used to propose a schematic composition for the LPS from Escherichia coli K-12. The formula contains four regions: the first consists of lipid A, ketodeoxyoctonoic acid, and a phosphorous component; the second contains only heptose; the third only glucose; and the fourth additional glucose, galactose, and rhamnose. LPS from E. coli B may have a similar composition but lacks the galactose and rhamnose units. A set of LPS-specific bacteriophages were used for comparing three mutants of Salmonella with a number of LPS mutants of E. coli K-12. The results confirm that there are basic similarities in the first and second regions of the LPS structure; they also support the four region divisions of the LPS formula. Paper chromatography was used for characterization of 32-P-labeled LPS from different strains of E. coli and Salmonella. The Rf values for LPS varied from 0.27 to 0.75 depending on the amounts of carbohydrates in the molecule. LPS from all strains studied was homogenous except for strain D31 which produced two types of LPS. Mild acid hydrolysis of labeled LPS liberated lipid A and two other components with phosphate, one of which was assigned to the first region. It is suggested that paper chromatography can be used in biosynthetic studies concerning regions 2 to 4.  相似文献   

12.
The rol (cld) gene encodes a protein involved in the expression of lipopolysaccharides in some members of the family Enterobacteriaceae. Rol interacts with one or more components of Rfc-dependent O-antigen biosynthetic complexes to regulate the chain length of lipopolysaccharide O antigens. The Rfc-Rol-dependent pathway for O-antigen synthesis is found in strains with heteropolysaccharide O antigens, and, consistent with this association, rol-homologous sequences were detected in chromosomal DNAs from 17 different serotypes with heteropolysaccharide O antigens. Homopolymer O antigens are synthesized by a pathway that does not involve either Rfc or Rol. It was therefore unexpected when a survey of Escherichia coli strains possessing mannose homopolymer O8 and O9 antigens showed that some strains contained rol. All 11 rol-positive strains coexpressed a group IB capsular K antigen with the O8 or O9 antigen. In contrast, 12 rol-negative strains all produced group IA K antigens in addition to the homopolymer O antigen. Previous research from this and other laboratories has shown that portions of the group I K antigens are attached to lipopolysaccharide lipid A-core, in a form that we have designated K(LPS). By constructing a hybrid strain with a deep rough rfa defect, it was shown that the K40 (group IB) K(LPS) antigen exists primarily as long chains. However, a significant amount of K40 antigen was surface expressed in a lipid A-core-independent pathway. The typical chain length distribution of the K40 antigen was altered by introduction of multicopy rol, suggesting that the K40 group IB K antigen is equivalent to a Rol-dependent O antigen. The prototype K30 (group IA) K antigen is expressed as short oligosaccharides (primarily single repeat units) in K(LPS), as well as a high-molecular-weight lipid A-core-independent form. Introduction of multicopy rol into the K30 strain generated a novel modal pattern of K(LPS) with longer polysaccharide chains. Collectively, these results suggested that group IA K(LPS) is also synthesized by a Rol-dependent pathway and that the typically short oligosaccharide K(LPS) results from the absence of Rol activity in these strains.  相似文献   

13.
When Escherichia coli O157:H7 bacteria are added to alfalfa sprouts growing in water, the bacteria bind tightly to the sprouts. In contrast, laboratory K-12 strains of E. coli do not bind to sprouts under similar conditions. The roles of E. coli O157:H7 lipopolysaccharide (LPS), capsular polysaccharide, and exopolysaccharides in binding to sprouts were examined. An LPS mutant had no effect on the binding of the pathogenic strain. Cellulose synthase mutants showed a significant reduction in binding; colanic acid mutants were more severely reduced, and binding by poly-beta-1,6-N-acetylglucosamine (PGA) mutants was barely detectable. The addition of a plasmid carrying a cellulose synthase gene to K-12 strains allowed them to bind to sprouts. A plasmid carrying the Bps biosynthesis genes had only a marginal effect on the binding of K-12 bacteria. However, the introduction of the same plasmid allowed Sinorhizobium meliloti and a nonbinding mutant of Agrobacterium tumefaciens to bind to tomato root segments. These results suggest that although multiple redundant protein adhesins are involved in the binding of E. coli O157:H7 to sprouts, the polysaccharides required for binding are not redundant and each polysaccharide may play a distinct role. PGA, colanic acid, and cellulose were also required for biofilm formation by a K-12 strain on plastic, but not for the binding of E. coli O157:H7 to mammalian cells.  相似文献   

14.
A recombinant clone encoding enzymes for Klebsiella pneumoniae O12-antigen lipopolysaccharide (LPS) was found when we screened for serum resistance of a cosmid-based genomic library of K. pneumoniae KT776 (O12:K80) introduced into Escherichia coli DH5alpha. A total of eight open reading frames (ORFs) (wb(O12) gene cluster) were necessary to produce K. pneumoniae O12-antigen LPS in E. coli K-12. A complete analysis of the K. pneumoniae wb(O12) cluster revealed an interesting coincidence with the wb(O4) cluster of Serratia marcescens from ORF5 to ORF8 (or WbbL to WbbA). This prompted us to generate mutants of K. pneumoniae strain KT776 (O12) and to study complementation between the two enterobacterial wb clusters using mutants of S. marcescens N28b (O4) obtained previously. Both wb gene clusters are examples of ABC 2 transporter-dependent pathways for O-antigen heteropolysaccharides. The wzm-wzt genes and the wbbA or wbbB genes were not interchangeable between the two gene clusters despite their high level of similarity. However, introduction of three cognate genes (wzm-wzt-wbbA or wzm-wzt-wbbB) into mutants unable to produce O antigen allowed production of the specific O antigen. The K. pneumoniae O12 WbbL protein performs the same function as WbbL from S. marcescens O4 in either the S. marcescens O4 or E. coli K-12 genetic background.  相似文献   

15.
The lipopolysaccharide (LPS) molecule is an important virulence determinant in Klebsiella pneumoniae. Studies on the serotype O1 LPS were initiated to determine the basis for antigenic heterogeneity previously observed in the O1 side chain polysaccharides and to resolve apparent ambiguities in the reported polysaccharide structure. Detailed chemical analysis, involving methylation and 1H- and 13C-nuclear magnetic resonance studies, demonstrated that the O-side chain polysaccharides of serotype O1 LPS contained a mixture of two structurally distinct D-galactan polymers. The repeating unit structures of these two polymers were identified as [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] (D-galactan I) and [----3)-alpha-D-Galp-(1----3)-beta-D-Galp-(1----] (D-Galactan II). D-Galactan I polysaccharides were heterogeneous in size and were detected throughout the sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) profile of O1 LPS. In contrast, D-galactan II was confined to the higher-molecular-weight region. The structures of the two D-galactans were not influenced by simultaneous synthesis of a capsular K antigen. Apparently, neither of the D-galactans constitutes a common antigen widespread in Klebsiella spp. as determined by immunochemical analysis. Examination of the LPSs in mutants indicated that expression of D-galactan I can occur independently of D-galactan II. Transconjugants of Escherichia coli K-12 strains carrying the his region of K. pneumoniae were constructed by chromosome mobilization with RP4::mini-Mu. In these transconjugants, the O antigen encoded by the his-linked rfb locus was determined to be D-galactan I, suggesting that genes involved in the expression of D-galactan II are not closely linked to the rfb cluster.  相似文献   

16.
Bacteriophage K139 was recently characterized as a temperate phage of O1 Vibrio cholerae. In this study we have determined the phage adsorption site on the bacterial cell surface. Phage-binding studies with purified lipopolysaccharide (LPS) of different O1 serotypes and biotypes revealed that the O1 antigen serves as the phage receptor. In addition, phage-resistant O1 El Tor strains were screened by using a virulent isolate of phage K139. Analysis of the LPS of such spontaneous phage-resistant mutants revealed that most of them synthesize incomplete LPS molecules, composed of either defective O1 antigen or core oligosaccharide. By applying phage-binding studies, it was possible to distinguish between receptor mutants and mutations which probably caused abortion of later steps of phage infection. Furthermore, we investigated the genetic nature of O1-negative strains by Southern hybridization with probes specific for the O antigen biosynthesis cluster (rfb region). Two of the investigated O1 antigen-negative mutants revealed insertions of element IS1004 into the rfb gene cluster. Treating one wbeW::IS1004 serum-sensitive mutant with normal human serum, we found that several survivors showed precise excision of IS1004, restoring O antigen biosynthesis and serum resistance. Investigation of clinical isolates by screening for phage resistance and performing LPS analysis of nonlysogenic strains led to the identification of a strain with decreased O1 antigen presentation. This strain had a significant reduction in its ability to colonize the mouse small intestine.  相似文献   

17.
We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, delta tolA and delta pal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both DeltatolA and delta pal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in delta tolA and delta pal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110 delta tolA and W3110 delta pal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol+ and pal+ genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase.  相似文献   

18.
Three mutants of Yersinia enterocolitica O:3, namely: YeO3-R1, YeO3-RfbR7 and YeO3-c-trs8-R were classified on the basis of sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS/PAGE) profile of isolated lipopolysaccharides (LPS) as belonging to the Ra- (the first) and the Rc-type (the other two mutants). Methylation analysis, in addition to 13C and 1H NMR studies of purified core oligosaccharides revealed structures similar to those established previously for the full core of Y. enterocolitica O:3 in the case of the Ra mutant, and identical to that reported for the Rc mutant Ye75R, in the case of the two other mutants. The O-specific sugar, 6d-L-altrose, which forms a homopolymeric O-chain, was present in small amounts in all three LPS preparations, as well as in the core oligosaccha ride preparations along with the Ra and the Rc sugars, characteristic of the Y. enterocolitica O:3 core. This result is in line with genetic data, indicating that it is the inner core region which is the receptor for the O-specific chain in Y. enterocolitica O:3. This region seems likewise to be the anchoring region for the enterobacterial common antigen (ECA), as shown by SDS/PAGE/Western blot analysis with monoclonal antibodies against ECA. In addition, we also demonstrated that the Ye75R mutant Rc and its parental strain Ye75S, both were ECA-immunogenic strains. So far, ECA-immunogenic strains, i.e. those with LPS-linked ECA, were only identified in E. coli mutants of the R1, R4 and K-12 serotype.  相似文献   

19.
The dendritic-cell-specific intercellular adhesion molecule nonintegrin (DC-SIGN) CD209 is a receptor for Escherichia coli K-12 that promotes bacterial adherence and phagocytosis. However, the ligand of E. coli for DC-SIGN has not yet been identified. In this study, we found that DC-SIGN did not mediate the phagocytosis of several pathogenic strains of E. coli, including enteropathogenic E. coli, enterohemorrhagic E. coli, enterotoxigenic E. coli, and uropathogenic E. coli, in dendritic cells or HeLa cells expressing human DC-SIGN antigen. However, we showed that an outer core lipopolysaccharide (LPS) (rough) mutant, unlike an inner core LPS (deep rough) mutant or O-antigen-expressing recombinant of E. coli K-12 was phagocytosed. These results demonstrate that the host cells expressing DC-SIGN can phagocytose E. coli in part by interacting with the complete core region of the LPS molecule. These results provide a mechanism for how O antigen acts as an antiphagocytic factor.  相似文献   

20.
Escherichia coli Capsule Bacteriophages II. Morphology   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli capsule bacteriophages (K phages) described herein are specific for certain capsular strains of E. coli, all of them test strains for different E. coli K antigens. The phages are not adsorbed to the acapsular mutants of their host organisms nor to similar strains with serologically and chemically different capsular polysaccharides. Thirteen E. coli (and one Klebsiella) K phages were visualized in the electron microscope. Most viruses are similar to P22 and thus belong to Bradley group C; however, one each of group A (long, contractile tail) and group B (long, noncontractile tail) was also found. All K phages were seen to carry spikes but no tail fibers were detected. These results suggest that the structures responsible for the recognition of the thick (about 400 nm or more) capsular polysaccharide gels are located in these spikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号