首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PCR和Southern Blot检测土拉弗氏菌气溶胶   总被引:2,自引:0,他引:2  
为提高检测土拉弗氏菌的特异性和敏感性,建立了土拉菌PCR及核酸杂交检测方法。运用平板计数、多聚酶链反应对土拉菌气溶胶稳定性进行了比较,结果表明PCR具有较高灵敏度,并且在采样后3小时PCR就可以得出定性结果,而平板计数则需要3~7天。采用PCR法合成了土拉菌376-bp探针,分别对细菌菌液、568-bpPCR产物和气溶胶样品进行杂交,结果表明菌悬液直接杂交可检出105CFU左右的细菌,检测PCR产物可达40pg。PCR和Southern印迹相结合有利于细菌的分离鉴定  相似文献   

2.
Tularemia is a zoonotic disease, occurring throughout the Northern Hemisphere. The causative agent, the bacterium Francisella tularensis, is represented by two main types. Type A is found in North America, whereas type B is mainly found in Asia and Europe and to a minor extent in North America. No routine technique for rapid diagnosis of tularemia has been generally applied. We have partially sequenced 16S rRNAs of two F. tularensis strains, as well as the closely related Francisella novicida. Of 550 nucleotides analyzed, only one difference in 16S rRNA primary sequence was found. This 16S rRNA analysis enabled the construction of oligonucleotides to be used as genus- and type-specific probes. Such probes were utilized for the establishment of a method for rapid and selective detection of the organism. This method allowed identification of Francisella spp. at the level of genus and also discrimination of type A and type B strains of F. tularensis. The analysis also permitted the detection of F. tularensis in spleen tissue from mice infected with the bacterium. The results presented will enable studies on the epizootiology and epidemiology of Francisella spp.  相似文献   

3.
应用TaqMan荧光定量PCR检测土拉弗朗西斯菌   总被引:2,自引:0,他引:2  
目的:利用Roche LightCycler实时定量PCR系统建立一种快速、灵敏、特异的检测土拉弗朗西斯菌的方法。方法:基于TaqMan荧光探针实时定量PCR技术,选择土拉弗朗西斯菌染色体上的特异序列[醇醛酮还原酶(AKR)和外膜蛋白FopA基因]作为检测靶序列,建立土拉弗朗西斯菌实时定量PCR检测方法;评价该检测方法的特异性和灵敏性;采用克隆菌株污染环境土壤来模拟实际样品,评价该检测方法在快速检测与现场检测等实际应用中的表现。结果:优化筛选基因组中的FT-AKR和FT-fopA片段作为检测靶序列,所建立的土拉弗朗西斯菌实时定量PCR检测方法检测克隆菌株质粒的灵敏度均为10个拷贝/每个反应体系;以其他非土拉弗朗西斯菌为模板未出现非特异扩增;模拟环境土壤样品检测灵敏度2个引物对分别为440和960CFU/g土壤;盲测实验结果显示对于灵敏度范围内的阳性样本均能正确识别,并能正确检测出不同浓度的阳性样本。以FT-fopA片段为靶序列的扩增效率不及基于FT-AKR引物对的扩增。结论:基于FT-AKR片段的引物对扩增效率高,检测土拉弗朗西斯菌具有特异、灵敏的特点,对临床诊断、环境污染监测、防治生物突发事件等具有重要意义。  相似文献   

4.
Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.  相似文献   

5.
目的建立胶体金免疫层析技术快速定量检测土拉弗朗西斯菌。方法利用胶体金标记和双抗体夹心免疫层析技术,建立土拉弗朗西斯菌的快速检测方法,评价其特异性和敏感性,并拟合检测曲线进行定量检测。在面粉、饼干、果冻、梨汁等食品样品中添加土拉弗朗西斯菌的FopA蛋白模拟污染样品,评价该方法对固体、半固体、液体等食品样品的检测能力。结果该法可在10min内完成定性和定量检测,灵敏度为750ng/ml,线性范围750~24000ng/ml、回收率为56.7%-89.2%。结论所建立的检测土拉弗朗西斯菌的胶体金免疫层析方法,能快速、灵敏、特异、准确地检测样品中的土拉弗朗西斯菌,适用于现场快速检测。  相似文献   

6.
Francisella tularensis is a highly virulent zoonotic bacterial pathogen capable of infecting numerous different mammalian species, including humans. Elucidation of the pathogenic mechanisms of F. tularensis has been hampered by a lack of tools to genetically manipulate this organism. Herein we describe the use of transposome complexes to create insertion mutations in the chromosome of the F. tularensis live vaccine strain (LVS). A Tn5-derived transposon encoding kanamycin resistance and lacking a transposase gene was complexed with transposase enzyme and transformed directly into F. tularensis LVS by electroporation. An insertion frequency of 2.6 x 10(-8) +/- 0.87 x 10(-8) per cell was consistently achieved using this method. There are 178 described Tn5 consensus target sites distributed throughout the F. tularensis genome. Twenty-two of 26 transposon insertions analyzed were within known or predicted open reading frames, but none of these insertions was associated with the Tn5 target site. Analysis of the insertions of sequentially passed strains indicated that the transposons were maintained stably at the initial insertion site after more than 270 generations. Therefore, transformation by electroporation of Tn5-based transposon-transposase complexes provided an efficient mechanism for generating random, stable chromosomal insertion mutations in F. tularensis.  相似文献   

7.
金标银染免疫渗滤法检测土拉弗朗西斯菌   总被引:1,自引:0,他引:1  
目的:建立金标银染免疫渗滤法检测土拉弗朗西斯菌(土拉菌)的方法,评价其灵敏度、特异性、重复性及其应用。方法:以小鼠抗土拉菌脂多糖单克隆抗体作为捕获抗体包被硝酸纤维素膜、兔抗土拉菌多克隆抗体作为检测抗体标记胶体金,通过金标银染技术放大检测信号,建立金标银染免疫渗滤法检测土拉弗朗西斯菌体系;评价该方法的灵敏度、特异性和重复性;以经荧光定量PCR定量的土拉弗朗西斯菌为检测对象,比较金标银染免疫渗滤法和免疫层析法。结果:金标银染免疫渗滤法检测土拉弗朗西斯菌的最小检出量为1.0×103 CFU/mL,灵敏度高于免疫层析法;检测大肠杆菌、炭疽芽孢杆菌、布鲁菌和鼠疫耶尔森菌的结果均为阴性;密封保存的检测卡80 d内重复性良好,100 d后反应强度略有降低。结论:金标银染免疫渗滤法检测土拉弗朗西斯菌敏感性高、特异性强、重复性好,且方便快捷,不需要仪器设备,可作为快速检测土拉弗朗西斯菌的首选方法。  相似文献   

8.
Immunoproteomic analysis was applied to study the immunoreactivity of serum samples collected at different time points from a laboratory assistant accidentally infected with highly virulent strain of Francisella tularensis subsp. tularensis. Immunoblotting showed that the spectrum of F. tularensis antigens recognized specifically by immune sera remained with the exception for 1 antigen stable for up to 16 years after infection. Using immunoproteomics approach 10 immunoreactive antigens were successfully identified. Several new immunogenic F. tularensis proteins were described for the first time.  相似文献   

9.
The facultative intracellular bacterium Francisella tularensis is the causal agent of the serious infectious disease tularemia. Despite the dynamic progress, which has been made in last few years, important questions regarding Francisella pathogenicity still remain to be answered. Generally, secreted proteins play an important role in pathogenicity of intracellular microbes. In this study, we investigated the protein composition of the culture filtrate proteins of highly virulent F. tularensis subsp. tularensis, strain SCHU S4 and attenuated F. tularensis subsp. holarctica, live vaccine strain using a comparative proteomic analysis. The majority of proteins identified in this study have been implicated in virulence mechanisms of other pathogens, and several have been categorized as having moonlighting properties; those that have more than one unrelated function. This profiling study of secreted proteins resulted in the unique detection of acid phosphatase (precursor) A (AcpA), β-lactamase, and hypothetical protein FTT0484 in the highly virulent strain SCHU S4 secretome. The release of AcpA may be of importance for F. tularensis subsp. tularensis virulence due to the recently described AcpA role in the F. tularensis escape from phagosomes.  相似文献   

10.
Survival and growth of Francisella tularensis in Acanthamoeba castellanii   总被引:5,自引:0,他引:5  
Francisella tularensis is a highly infectious, facultative intracellular bacterium which causes epidemics of tularemia in both humans and mammals at regular intervals. The natural reservoir of the bacterium is largely unknown, although it has been speculated that protozoa may harbor it. To test this hypothesis, Acanthamoeba castellanii was cocultured with a strain of F. tularensis engineered to produce green fluorescent protein (GFP) in a nutrient-rich medium. GFP fluorescence within A. castellanii was then monitored by flow cytometry and fluorescence microscopy. In addition, extracellular bacteria were distinguished from intracellular bacteria by targeting with monoclonal antibodies. Electron microscopy was used to determine the intracellular location of F. tularensis in A. castellanii, and viable counts were obtained for both extracellular and intracellular bacteria. The results showed that many F. tularensis cells were located intracellularly in A. castellanii cells. The bacteria multiplied within intracellular vacuoles and eventually killed many of the host cells. F. tularensis was found in intact trophozoites, excreted vesicles, and cysts. Furthermore, F. tularensis grew faster in cocultures with A. castellanii than it did when grown alone in the same medium. This increase in growth was accompanied by a decrease in the number of A. castellanii cells. The interaction between F. tularensis and amoebae demonstrated in this study indicates that ubiquitous protozoa might be an important environmental reservoir for F. tularensis.  相似文献   

11.
Sensitivity of 6 F. tularensis strains to 57 antibiotics and synthetic antibacterial drugs was studied. It was shown that the strains were highly sensitive to aminoglycosides, tetracyclines, anzamycins, quinolones, chloramphenicol, nitrofurantoin, nitroxoline, novobiocin and fusidin and resistant to penicillins, cephalosporins, polypeptides, vancomycin and sulfanylamides. The interrace differences in F. tularensis could be detected only by sensitivity to erythromycin, oleandomycin and spiramycin. There was observed no cross resistance to streptomycin and other aminoglycosides in F. tularensis. Assay of F. tularensis sensitivity to antibacterial drugs of various groups with the rapid photometric procedure and the agar diffusion method revealed that the results were highly comparable.  相似文献   

12.
The intracellular bacterium Francisella tularensis is the causative agent of tularemia and poses a serious threat as an agent of bioterrorism. We have developed a highly effective molecular subtyping system from 25 variable-number tandem repeat (VNTR) loci. In our study, multiple-locus VNTR analysis (MLVA) was used to analyze genetic relationships and potential population structure within a global collection of 192 F. tularensis isolates, including representatives from each of the four subspecies. The VNTR loci displayed between 2 and 31 alleles with Nei's diversity values between 0.05 and 0.95. Neighbor-joining cluster analysis of VNTR data revealed 120 genotypes among the 192 F. tularensis isolates, including accurate subspecies identification. F. tularensis subsp. tularensis (type A) isolates showed great diversity at VNTR loci, while F. tularensis subsp. holarctica (type B) isolates showed much lower levels despite a much broader geographical prevalence. The resolution of two distinct clades within F. tularensis subsp. tularensis (designated A.I and A.II) revealed a previously unrecognized genetic division within this highly virulent subspecies. F. tularensis subsp. holarctica appears to have recently spread globally across continents from a single origin, while F. tularensis subsp. tularensis has a long and complex evolutionary history almost exclusively in North America. The sole non-North American type A isolates (Slovakian) were closely related to the SCHU S4 strain. Significant linkage disequilibrium was detected among VNTR loci of F. tularensis consistent with a clonal population structure. Overall, this work greatly augments the study of tularemia ecology and epidemiology, while providing a framework for future forensic analysis of F. tularensis isolates.  相似文献   

13.
14.
The possibility of expression of genes encoding mycobacterial antigens in Francisella tularensis 15/10 vaccine strain cells has been shown for the first time. To obtain stable and effective expression of mycobacterial antigens in the F. tularensis cells, the plasmid vector pPMC1 and hybrid genes consisting of the leader part FL of the F. tularensis membrane protein FopA and structural moieties of the mature protein Ag85B or the fused protein Ag85B-ESAT-6 were constructed. Recombinant strains F. tularensis RVp17 and RVp18 expressing protective mycobacterial antigens in the fused proteins FL-Ag85B and FL-Ag85B-ESAT-6, respectively, were obtained. Expression of the protective mycobacterial antigens in F. tularensis was analyzed using specific antisera to the recombinant proteins Ag85-(His)6 and ESAT-6-(His)6 isolated from Escherichia coli producer strains created on the basis of the pET23b(+) and pET24b(+) vectors. The expression of heterologous protective antigens in F. tularensis 15/10 is promising for creation of live recombinant anti-tuberculosis vaccines on the basis of the tularemia vaccine strain.  相似文献   

15.
A cell culture assay to determine the virulence of Francisella tularensis was devised. Murine cell lines P388 and J774 were significantly more susceptible to F. tularensis Schu4 than the attenuated live vaccine strain. The ability of F. tularensis strains to cause cell death correlated with their virulence to mice. Use of this assay with infected cells separated from susceptible uninfected cells by a membrane with 0.1 μm pores, failed to demonstrate possible diffusible exotoxins produced by F. tularensis.  相似文献   

16.
The protein complement of whole cell extract of the bacterium Francisella tularensis tularensis was analyzed using two-dimensional electrophoresis with preparative isoelectric focusing in the first dimension. The format allows the quantification of relative protein abundance by linear densitometry and extends the potential dynamic range of protein detection by as much as an order of magnitude. The relative abundance and rank order of 136 unique proteins identified in F. tularensis tularensis were established. It is estimated that 16% of the moderately to highly expressed proteins and 8% of all predicted non-pseudogenes were identified by comparing this proteome information with the relative abundance of mRNA as measured by microarray. This rank-ordered proteome list provides an important resource for understanding the pathogenesis of F. tularensis and is a tool for the selection and design of synthetic vaccines. This method represents a useful additional technique to improve whole proteome analyses of simple organisms.  相似文献   

17.
The Francisella tularensis strain LVS phagosome disintegrates during the first few hours after bacterial entry and microbes are released to the cytosol. Within 12 h both rapid multiplication of microbes and a steep increase of apoptosis of infected macrophages occur. We searched for signals involved in the death of macrophages and detected molecules associated with the autophagy machinery cathepsin D, PTEN, p53 and LC3, whose levels or modification were influenced by ongoing in vitro tularemic infection. The sequestration of cytoplasmic F. tularensis LVS into autophagosomes was confirmed by co-localization of the LVS strain containing vacuoles with LC3 (an autophagosomal marker). We also demonstrated the presence of MHC II antigens in these autophagosomes, indicating that they might act as a source of endogenous tularemic antigens for presentation to CD4+ T lymphocytes.  相似文献   

18.
Comparative genome hybridization of the Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica populations have shown that genome content is highly conserved, with relatively few genes in the F. tularensis subsp. tularensis genome being absent in other F. tularensis subspecies. To determine if organization of the genome differs between global populations of F. tularensis subsp. tularensis and F. tularensis subsp. holarctica, we have used paired-end sequence mapping (PESM) to identify regions of the genome where synteny is broken. The PESM approach compares the physical distances between paired-end sequencing reads of a library of a wild-type reference F. tularensis subsp. holarctica strain to the predicted lengths between the reads based on map coordinates of two different F. tularensis genome sequences. A total of 17 different continuous regions were identified in the F. tularensis subsp. holarctica genome (CR(holar)(c)(tica)) which are noncontiguous in the F. tularensis subsp. tularensis genome. Six of the 17 different CR(holarctica) are positioned as adjacent pairs in the F. tularensis subsp. tularensis genome sequence but are translocated in F. tularensis subsp. holarctica, implying that their arrangements are ancestral in F. tularensis subsp. tularensis and derived in F. tularensis subsp. holarctica. PCR analysis of the CR(holarctica) in 88 additional F. tularensis subsp. tularensis and F. tularensis subsp. holarctica isolates showed that the arrangements of the CR(holarctica) are highly conserved, particularly in F. tularensis subsp. holarctica, consistent with the hypothesis that global populations of F. tularensis subsp. holarctica have recently experienced a periodic selection event or they have emerged from a recent clonal expansion. Two unique F. tularensis subsp. tularensis-like strains were also observed which likely are derived from evolutionary intermediates and may represent a new taxonomic unit.  相似文献   

19.
土拉弗朗西斯菌检测研究进展   总被引:1,自引:0,他引:1  
王振东  景滢滢  王静 《生物磁学》2009,(14):2763-2765
土拉弗朗西斯菌(Francisella tularensis)是土拉菌病(Tularemia)的致病菌,是最具传染性的致病菌之一,在自然界中已发现一百种以上的动物感染此菌。因其传播途径多样,易扩散、毒性强而被美国疾病控制预防中心列入A类生物恐怖制剂。土拉菌病是一种人畜共患病,致死率高,及时、准确的检测土拉菌对于土拉菌病患者及时治疗和防止扩散具有重要的意义。土拉菌检测方法很多,如菌培养,微凝集实验、酶联免疫吸附、快速检测试纸条、生物传感器、PCR、核酸杂交检测、质谱分析、基因芯片等。但到目前为止还没有一种成熟的用于土拉菌检测方法,其主要原因在于土拉菌致病性强,且不易分离培养。本文综述了土拉菌细菌学、免疫学、分子生物学方法检测的最新研究进展。  相似文献   

20.
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号