首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of divalent cations on Ca2+-impermeable containing (GluR2 subunit) MPA receptors of hippocampal pyramidal neurones isolated from rat brain was studied using patch-clamping. Ca2+, Mg2+, Mn2+, Co2+, Ni2+ and Zn2+ inhibited currents induced by kainate and glutamate. Inhibition was fast, reversible and voltage independent. The rank order of activities was Ni2+ > Zn2+ > Co2+ > Ca2+ > Mn2+ > Mg2+. Cyclothiazide (0.1 mm) significantly reduced inhibition by divalent cations and 6, 7 dinitroquinoxaline-2.3-dione (DNQX). However, high concentrations of Ni2+ and DNQX inhibited AMPA receptors even in the presence of cyclothiazide. The inhibitory effect of divalent cations as well as DNQX was counteracted by an increase in agonist concentration. In the presence of divalent cations the EC50 values of kainate and glutamate were increased, but the maximal response was not changed. An increase in agonist concentration induced a parallel shift in the concentration-inhibition curve for a divalent cation. These data suggest a competitive-like type of inhibition. However, an increase in agonist concentration reduced the inhibitory action of Ni2+ less than that of DNQX. This gave evidence against direct competition between divalent cations and AMPA receptor agonists. A 'complex-competition' hypothesis was proposed to explain the inhibitory action of divalent cations; it is suggested that divalent cations form ion-agonist complexes, which compete with free agonist for agonist-binding sites on AMPA receptors.  相似文献   

2.
3.
Glutamate receptor overactivation induces excitotoxic neuronal death, but the contribution of glutamate receptor subtypes to this excitotoxicity is unclear. We have previously shown that excitotoxicity by NMDA receptor overactivation is associated with choline release and inhibition of phosphatidylcholine synthesis. We have now investigated whether the ability of non-NMDA ionotropic glutamate receptor subtypes to induce excitotoxicity is related to the ability to inhibit phosphatidylcholine synthesis. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced a concentration-dependent increase in extracellular choline and inhibited phosphatidylcholine synthesis when receptor desensitization was prevented. Kainate released choline and inhibited phosphatidylcholine synthesis by an action at AMPA receptors, because these effects of kainate were blocked by the AMPA receptor antagonist LY300164. Selective activation of kainate receptors failed to release choline, even when kainate receptor desensitization was prevented. The inhibition of phosphatidylcholine synthesis evoked by activation of non-desensitizing AMPA receptors was followed by neuronal death. In contrast, specific kainate receptor activation, which did not inhibit phosphatidylcholine synthesis, did not produce neuronal death. Choline release and inhibition of phosphatidylcholine synthesis were induced by AMPA at non-desensitizing AMPA receptors well before excitotoxicity. Furthermore, choline release by AMPA required the entry of Ca(2+) through the receptor channel. Our results show that AMPA, but not kainate, receptor overactivation induces excitotoxic cell death, and that this effect is directly related to the ability to inhibit phosphatidylcholine synthesis. Moreover, these results indicate that inhibition of phosphatidylcholine synthesis is an early event of the excitotoxic process, downstream of glutamate receptor-mediated Ca(2+) overload.  相似文献   

4.
5.
This study was designed to test whether the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-facilitating drug, aniracetam, could potentiate photic responses of the biological clock in the suprachiasmatic nucleus (SCN) of rodents. Using the whole-cell patch technique, we first demonstrated that AMPA currents elicited by either local AMPA application or optic chiasm stimulation were augmented by aniracetam in the neurons of the SCN. The AMPA application-elicited increase of intracellular Ca2+ concentration in SCN slices was also enhanced by aniracetam treatment. The systemic injection of aniracetam dose-dependently (10-100 mg/kg) potentiated the phase delay in behavioral rhythm induced by brief light exposure of low intensity (3 lux) but not high intensity (10 or 60 lux) during early subjective night. Under the blockade of NMDA receptors by (+) MK801, aniracetam failed to potentiate a light (3 lux)-induced phase delay in behavioral rhythm. Aniracetam increased the photic induction of c-Fos protein in the SCN that was elicited by low intensity light exposure (3 lux). These results suggest that AMPA receptor-mediated responses facilitated by aniracetam can explain enhanced photic responses of the biological clock in the SCN of rodents.  相似文献   

6.
We adopted a genetic approach to test the importance of edited GluR2-free, Ca(2+)-permeable, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the pathophysiology of experimental autoimmune encephalomyelitis, an inflammatory demyelinative disorder resembling multiple sclerosis. Initial studies showed that oligodendroglial lineage cells from mice lacking functional copies of the gene encoding the GluR3 AMPA receptor subunit (Gria3) had a diminished capacity to assemble edited GluR2-free AMPA receptors, and were resistant to excitotoxicity in vitro. Neurological deficits and spinal cord demyelination elicited by immunization with myelin oligodendrocyte glycoprotein peptide were substantially milder in these Gria3 mutant mice than in their wild-type littermates. These results support the hypothesis that oligodendroglial excitotoxicity mediated by AMPA receptors that do not contain edited GluR2 subunits contributes to demyelination in experimental autoimmune encephalomyelitis, and suggest that inhibiting these Ca(2+)-permeable AMPA receptors would be therapeutic in multiple sclerosis.  相似文献   

7.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, one subtype in the family of ionotropic glutamate receptors, are the main receptors responsible for excitatory signaling in the mammalian central nervous system. Previous studies utilitizing the isolated ligand binding domain of these receptors have provided insight into the role of specific ligand-protein interactions in mediating receptor activation. However, these studies relied heavily on the partial agonist kainate, in which the alpha-amine group is constrained in a pyrrolidine ring. Here we have studied a series of substituted and unsubstituted willardiines with primary alpha-amine groups similar to that of the full agonist glutamate whose activation can be varied depending on the size of the substituent. The specific ligand-protein interactions in the mechanism of partial agonism in this subtype were investigated using vibrational spectroscopy, and the large-scale conformational changes in the ligand binding domain were studied with fluorescence resonance energy transfer (FRET). These investigations show that the strength of the interaction at the alpha-amine group correlates with the extent of cleft closure and extent of activation, with the agonist of higher efficacy showing larger cleft closure and stronger interactions at this group, suggesting that this is one of the mechanisms by which the agonist controls receptor activation.  相似文献   

8.

Background

Honeybee's sting on human skin can induce ongoing pain, hyperalgesia and inflammation. Injection of bee venom (BV) into the intraplantar surface of the rat hindpaw induces an early onset of spontaneous pain followed by a lasting thermal and mechanical hypersensitivity in the affected paw. The underlying mechanisms of BV-induced thermal and mechanical hypersensitivity are, however, poorly understood. In the present study, we investigated the role of mitogen-activated protein kinase (MAPK) in the generation of BV-induced pain hypersensitivity.

Results

We found that BV injection resulted in a quick activation of p38, predominantly in the L4/L5 spinal dorsal horn ipsilateral to the inflammation from 1 hr to 7 d post-injection. Phosphorylated p38 (p-p38) was expressed in both neurons and microglia, but not in astrocytes. Intrathecal administration of the p38 inhibitor, SB203580, prevented BV-induced thermal hypersensitivity from 1 hr to 3 d, but had no effect on mechanical hypersensitivity. Activated ERK1/2 was observed exclusively in neurons in the L4/L5 dorsal horn from 2 min to 1 d, peaking at 2 min after BV injection. Intrathecal administration of the MEK inhibitor, U0126, prevented both mechanical and thermal hypersensitivity from 1 hr to 2 d. p-ERK1/2 and p-p38 were expressed in neurons in distinct regions of the L4/L5 dorsal horn; p-ERK1/2 was mainly in lamina I, while p-p38 was mainly in lamina II of the dorsal horn.

Conclusion

The results indicate that differential activation of p38 and ERK1/2 in the dorsal horn may contribute to the generation and development of BV-induced pain hypersensitivity by different mechanisms.  相似文献   

9.
Piriqualone (1) was found to be an antagonist of AMPA receptors. Structure activity optimization was conducted on each of the three rings in 1 to afford a series of potent and selective antagonists. The sterically crowded environment surrounding the N-3 aryl group provided sufficient thermal stability for atropisomers to be isolated. Separation of these atropisomers resulted in the identification of (+)-38 (CP-465,022), a compound that binds to the AMPA receptor with high affinity (IC50 = 36 nM) and displays potent anticonvulsant activity.  相似文献   

10.
Aberrant dopamine D(4) receptor function has been implicated in mental illnesses, including schizophrenia and attention deficit-hyperactivity disorder. Recently we have found that D(4) receptor exerts an activity-dependent bi-directional regulation of AMPA receptor (AMPAR)-mediated synaptic currents in pyramidal neurons of prefrontal cortex (PFC) via the dual control of calcium/calmodulin kinase II (CaMKII) activity. In this study, we examined the signaling mechanisms downstream of CaMKII that govern the complex effects of D(4) on glutamatergic transmission. We found that in PFC neurons at high activity state, D(4) suppresses AMPAR responses by disrupting the kinesin motor-based transport of GluR2 along microtubules, which was accompanied by the D(4) reduction of microtubule stability via a mechanism dependent on CaMKII inhibition. On the other hand, in PFC neurons at the low activity state, D(4) potentiates AMPAR responses by facilitating synaptic targeting of GluR1 through the scaffold protein SAP97 via a mechanism dependent on CaMKII stimulation. Taken together, these results have identified distinct signaling mechanisms underlying the homeostatic regulation of glutamatergic transmission by D(4) receptors, which may be important for cognitive and emotional processes in which dopamine is involved.  相似文献   

11.
Emerging evidence from studies of Huntington disease (HD) pathophysiology suggests that huntingtin (htt) and its associated protein HAP1 participate in intracellular trafficking and synaptic function. However, it is largely unknown whether AMPA receptor trafficking, which is crucial for controlling the efficacy of synaptic excitation, is affected by the mutant huntingtin with polyglutamine expansion (polyQ-htt). In this study, we found that expressing polyQ-htt in neuronal cultures significantly decreased the amplitude and frequency of AMPAR-mediated miniature excitatory postsynaptic current (mEPSC), while expressing wild-type huntingtin (WT-htt) increased mEPSC. AMPAR-mediated synaptic transmission was also impaired in a transgenic mouse model of HD expressing polyQ-htt. The effect of polyQ-htt on mEPSC was mimicked by knockdown of HAP1 and occluded by the dominant negative HAP1. Moreover, we found that huntingtin affected mESPC via a mechanism depending on the kinesin motor protein, KIF5, which controls the transport of GluR2-containing AMPARs along microtubules in dendrites. The GluR2/KIF5/HAP1 complex was disrupted and dissociated from microtubules in the HD mouse model. Together, these data suggest that AMPAR trafficking and function is impaired by mutant huntingtin, presumably due to the interference of KIF5-mediated microtubule-based transport of AMPA receptors. The diminished strength of glutamatergic transmission could contribute to the deficits in movement control and cognitive processes in HD conditions.  相似文献   

12.
Developing neuronal populations undergo significant attrition by natural cell death. Dopaminergic neurons in the substantia nigra pars compacta undergo apoptosis during synaptogenesis. Following this time window, destruction of the anatomic target of dopaminergic neurons results in dopaminergic cell death but the morphology is no longer apoptotic. We describe ultrastructural changes that appear unique to dying embryonic dopaminergic neurons. In primary cultures of mesencephalon, death of dopaminergic neurons is triggered by activation of glutamate receptors sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and differs ultrastructurally from both neuronal apoptosis or typical excitotoxicity. AMPA causes morphological changes selectively in dopaminergic neurons, without affecting other neurons in the same culture dishes. Two hours after the onset of treatment swelling of Golgi complexes is apparent. At 3 h, dopaminergic neurons display loss of membrane asymmetry (coinciding with commitment to die), as well as nuclear membrane invagination, irregular aggregation of chromatin, and mitochondrial swelling. Nuclear changes continue to worsen until loss of cytoplasmic structures and cell death begins to occur after 12 h. These changes are different from those described in neurons undergoing either apoptosis or excitotoxic death, but are similar to ultrastructural changes observed in spontaneous death of dopaminergic neurons in the natural mutant weaver mouse.  相似文献   

13.
We have examined responses of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptors in the chick nucleus magnocellularis to pairs of pulses of glutamate and determined the extent of desensitization and the rate of recovery. Receptors recovered from desensitization with a time constant of 16 ms, regardless of the concentration or duration of the conditioning pulse. Even with very brief conditioning pulses, evoking submaximal currents, desensitization occurred at a consistent rate after the removal of free ligand. A quantitative kinetic model based on these data shows that receptors must desensitize from a closed state. The results provide evidence that very brief exposure to glutamate, on the time scale of uniquantal synaptic transmission, will result in a significant reduction in sensitivity of postsynaptic receptors.  相似文献   

14.
The highly negatively charged polysialic acid (PSA) is a carbohydrate predominantly carried by the neural cell adhesion molecule (NCAM) in mammals. NCAM and, in particular, PSA play important roles in cellular and synaptic plasticity. Here we investigated whether PSA modulates the activity of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) subtype of glutamate receptors (AMPA-Rs). Single channel recordings of affinity-purified AMPA-Rs reconstituted in lipid bilayers revealed that bacterially derived PSA, called colominic acid, prolonged the open channel time of AMPA-R-mediated currents by severalfold and altered the bursting pattern of the receptor channels but did not modify AMPA-R single channel conductance. This effect was reversible, concentration-dependent, and specific, since monomers of sialic acid and another negatively charged carbohydrate, chondroitin sulfate, did not potentiate single channel AMPA-R currents. Recombinant PSA-NCAM also potentiated currents mediated by reconstituted AMPA-Rs. In pyramidal neurons acutely isolated from the CA1 region of the early postnatal hippocampus, l-glutamate or AMPA (applied in the presence of antagonists blocking voltage-gated Na(+) and K(+) currents and N-methyl-d-aspartate and metabotropic glutamate receptors) induced inward currents, which were significantly increased by co-application of colominic acid. Chondroitin sulfate did not affect AMPA-R-mediated currents in CA1 neurons. The effect of colominic acid was age-dependent, since in pyramidal neurons from adult hippocampus, colominic acid failed to potentiate glutamate responses. Thus, our study demonstrates age-dependent potentiation of AMPA receptors by PSA via a mechanism probably involving direct PSA-AMPA-R interactions. This mechanism might amplify AMPA-R-mediated signaling in immature cells, thereby affecting their development.  相似文献   

15.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are the main excitatory neurotransmitter receptors in the mammalian central nervous system. Structures of the isolated ligand binding domain of this receptor have provided significant insight into the large-scale conformational changes, which when propagated to the channel segments leads to receptor activation. However, to establish the role of specific molecular interactions in controlling fine details such as the magnitude of the functional response, we have used a multiscale approach, where changes at specific moieties of the agonists have been studied by vibrational spectroscopy, while large-scale conformational changes have been studied using fluorescence resonance energy transfer (FRET) investigations. By exploiting the wide range of activations by the agonists, glutamate, kainate, and AMPA, for the wild type and Y450F and L650T mutants of the GluR2 subtype, and by using the multiscale investigation, we show that the strength of the interactions at the alpha-amine group of the agonist with the protein in all but one case tracks the extent of activation. Since the alpha-amine group forms bridging interactions at the cusp of the ligand binding cleft, this appears to be a critical interaction through which the agonist controls the extent of activation of the receptor.  相似文献   

16.
In hippocampal neurons, the exocytotic process of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors is known to depend on activation of N-methyl-d-aspartate channels and its resultant Ca(2+) influx from extracellular spaces. Here we found that brain-derived neurotrophic factor (BDNF) induced a rapid surface translocation of AMPA receptors in an activity-independent manner in developing neocortical neurons. The receptor translocation became evident within hours as monitored by [(3)H]AMPA binding and was resistant against ionotropic glutamate receptor antagonists as evidenced with surface biotinylation assay. This process required intracellular Ca(2+) and was inhibited by the blockers of conventional exocytosis, brefeldin A, botulinum toxin B, and N-ethylmaleimide. To explore the translocation mechanism of individual AMPA receptor subunits, we utilized the human embryonic kidney (HEK) 293 cells carrying the BDNF receptor TrkB. After the single transfection of GluR2 cDNA or GluR1 cDNA into HEK/TrkB cells, BDNF triggered the translocation of GluR2 but not that of GluR1. Subsequent mutation analysis of GluR2 carboxyl-terminal region indicated that the translocation of GluR2 subunit in HEK293 cells involved its N-ethylmaleimide-sensitive factor-binding domain but not its PDZ-interacting site. Following co-transfection of GluR1 and GluR2 cDNAs, solid phase cell sorting revealed that GluR1 subunits were also able to translocate to the cell surface in response to BDNF. An immunoprecipitation assay confirmed that BDNF stimulation can enhance the interaction of GluR2 with N-ethylmaleimide-sensitive factor. These results reveal a novel role of BDNF in regulating the surface expression of AMPA receptors through a GluR2-NSF interaction.  相似文献   

17.
Glutamate receptors (GluR) are oligomeric protein complexes formed by the assembly of four or perhaps five subunits. The rules that govern the selectivity of this process are not well understood. Here, we expressed combinations of subunits from two related GluR subfamilies in COS7 cells, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors. By co-immunoprecipitation experiments, we assessed the ability of AMPA receptor subunits to assemble into multimeric complexes. Subunits GluR1-4 associated with indistinguishable efficiency with each other, whereas the kainate receptor subunits GluR6 and 7 showed a much lower degree of association with GluR1. Using chimeric receptors and truncation fragments of subunits, we show that this assembly specificity is determined by N-terminal regions of these subunits and that the most N-terminal domain of GluR2 together with a membrane anchor efficiently associates with GluR1.  相似文献   

18.
The primary burst of Ab and germinal center (GC) formation in response to T-dependent Ag is compromised in aging mice. Here we examine the effects of aging on the post-GC phase of memory B cell differentiation and the late Ab repertoire maturation in bone marrow (BM) in mice immunized with a hapten nitrophenyl coupled to chicken gamma-globulin. Specific Ab-forming cells (AFC) with mutated V(H) genes accumulated preferentially in the BM of aged mice, although the AFC numbers and average number of mutations per V(H) were lower, and the D gene usage was less restricted compared with those in the young animals. However, the repertoire of AFC after an Ag boost demonstrated the hallmarks of Ag selection, including the recurrent mutations and canonical VD rearrangements, similar to the late primary response in young animals. It is postulated that the Ab repertoire maturation in aged mice is delayed and may be notably improved by repeated immunizations.  相似文献   

19.
The extracellular part of ionotropic glutamate receptor (iGluR) subunits can be divided into a conserved two-lobed ligand-binding domain ("S1S2") and an N-terminal approximately 400-residue segment of unknown function ("X domain") which shows high sequence variation among subunits. To investigate the structure and properties of the N-terminal domain, we have now produced affinity-tagged recombinant fragments which represent the X domain of the GluRD subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective glutamate receptors either alone or covalently linked to the ligand-binding domain ("XS1S2"). These fragments were expressed in insect cells as secreted soluble proteins and were recognized by a conformation-specific anti-GluRD monoclonal antibody. A hydrodynamic analysis of the purified fragments revealed them to be dimers, in contrast to the S1S2 ligand-binding domain which is monomeric. The X domain did not bind radiolabeled AMPA or glutamate nor did its presence affect the ligand binding properties of the S1S2 domain. Our findings demonstrate that the N-terminal domain of AMPA receptor can be expressed as a soluble polypeptide and suggest that subunit interactions in iGluR may involve the extracellular domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号