首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D O Sobel 《Peptides》1986,7(3):443-448
To investigate the role of calcium (Ca+2) in CRF stimulated ACTH release, we studied the effect of the following conditions on CRF (10 nM) mediated ACTH release in primary pituitary monolayer culture: different concentrations of Ca+2; EGTA; lanthanum (La+3) and nifedipine, blockers of calcium cell influx and penfluridol, trifluoperazine, and pimozide, inhibitors of calmodulin activation. Higher concentrations of Ca+2 in the culture medium led to greater amounts of CRF induced ACTH release. EGTA at 3 mM decreased the amount of CRF stimulated ACTH release by 60% but did not alter the spontaneous release of ACTH. At 0.5 mM and 1.0 mM La+3, ACTH release induced by CRF was inhibited by 23% and 35% respectively (p less than 0.01). Nifedipine (both 10(-5) and 10(-4) M) inhibited CRF stimulated ACTH release but only to a maximum of 30%. This inhibition was completely overcome by the addition of 12 mM calcium. Penfluridol, pimozide, and trifluoperazine blocked the release of ACTH induced by CRF by 63%, 26%, and 0% respectively. In conclusion, extracellular Ca+2, Ca+2 influx, and calmodulin play a role in the mechanism of CRF stimulated ACTH in vitro.  相似文献   

2.
Corticotropin releasing factor (CRF) was tested for its ability to stimulate ACTH and β-endorphin secretion from clonal AtT-20D16-16 mouse pituitary tumor cells. Release of both hormones was stimulated 4 to 5-fold over the basal release at nanomolar concentrations of synthetic CRF. CRF analogues stimulated ACTHβ-endorphin release with the same order of potency in the tumor cells as in primary cultures of anterior pituitary cells. A 90-min exposure to CRF elicited a 29–35% increase in total ACTH and β-endorphin immunoreactivity in tumor cell cultures. Dexamethasone markedly inhibited CRF-stimulated and basal ACTH and β-endorphin release. AtT-20D16-16 cells may serve as a good model system for studying the biochemistry of CRF receptor-mediated events involved in ACTHβ-endorphin release and synthesis.  相似文献   

3.
Isolated adrenal cells prepared by tryptic digestion of the guinea-pig adrenal gland are sensitive to low concentrations (less than 25 pg/ml) of adrenocorticotrophin (ACTH). Cell which have been pre-incubated for 2 h. centrifuged and resuspended in fresh culture medium prior to the introduction of 10 pg/ml ACTH for 60 min show a marked increase (328 +/- 109 nmol/l; mean +/- SD) in cortisol secretion over the control compared to freshly dispersed cells (75 +/- 45 nmol/l). Further potentiation of the ACTH effect was seen with the pre-incubated cells by suplementing the medium with calcium (8 mM) and ascorbate (2 mM) but not with theophylline (1 mM). Basal cortisol secretion was not affected by any of the additives. In the presence of 8 mM calcium and after 60 min incubation 10 pg/ml ACTH stimulated cortisol secretion from 328 nmol/l over the control to 839 +/- 382 nmol/l. The effect of ascorbate (2 mM) was to further increase the effect of ACTH at all dose levels tested (1-25 pg/ml). The concentration of ACTH required to provoke half maximal cortisol secretion decreased from 95 pg/ml with normal medium to 12 pg/ml with calcium -ascorbate supplemented medium. Using this supplemented medium the cells were sensitive to 1 pg/ml and cortisol secretion was stimulated 10-fold over the control with 50 pg/ml, a dose which saturated the system.  相似文献   

4.
V Giguere  G Lefevre  F Labrie 《Life sciences》1982,31(26):3057-3062
Synthetic ovine corticotropin-releasing factor (CRF) causes a 6- to 8-fold stimulation of ACTH release and cAMP accumulation in rat anterior pituitary cells in culture at ED50 values of 1 and 4 nM, respectively. Removal of Ca2+ from the incubation medium reduces CRF-induced ACTH release by 70% but have no effect on cyclic AMP accumulation. ACTH release induced by 8-Br-cAMP is inhibited by 65% in the absence of Ca2+. The Ca2+ ionophore A23187 does not alter spontaneous ACTH release. Verapamil, a pharmacological agent that blocks Ca2+ entry into cells, has no influence on spontaneous or CRF-induced ACTH release. The present data clearly demonstrate a role of Ca2+ in CRF action at a step subsequent to cAMP formation and suggest that Ca2+ is mobilized from intracellular stores during CRF stimulation.  相似文献   

5.
This study was undertaken to define the roles of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in the regulation of adrenocorticotropin (ACTH) release and biosynthesis in cultured ovine anterior pituitary cells and to define the intracellular mechanisms responsible for their action. At 4 h, CRF and AVP increased both ACTH release and total ACTH content, with AVP clearly the more potent agonist (maximal ACTH release: AVP, 22.8-fold; CRF, 7.6-fold; maximal increment in total ACTH content: AVP, 1.9-fold; CRF, 1.1-fold; EC50 for ACTH release: AVP, 2.3 +/- 0.5 nM; CRF, 9.2 +/- 5.0 nM). The increase in total ACTH content was interpreted to reflect an augmentation of ACTH biosynthesis since it was abolished by 10 microM cycloheximide. Exposure of the anterior pituitary cells to increasing concentrations of forskolin or 8-bromo-cAMP elicited increases in ACTH release and total ACTH content that were similar to those caused by CRF. A 30-min incubation with phorbol 12-myristate 13-acetate (PMA) caused a dose-related translocation of protein kinase C from the cytosol to the cell membrane; after 4 h, the increases in ACTH release and total ACTH content in response to increasing concentrations of PMA were similar to those caused by AVP. Chronic (24 h) exposure to 150 nM PMA caused an almost total depletion of both cytosolic and membrane-bound protein kinase C activities. When protein kinase C-depleted cells were subsequently exposed to AVP, the increases in ACTH release and total ACTH content were markedly attenuated, but the responses to CRF were preserved. Finally, the combination of CRF and AVP, CRF and PMA, or AVP and 8-bromo-cAMP increased ACTH release and total ACTH content in a synergistic manner. We conclude that: 1) in ovine anterior pituitary cells, AVP is the predominant regulator of ACTH secretion and biosynthesis; 2) the action of AVP is predominantly mediated by activation of protein kinase C, whereas the action of CRF is likely to be mediated by activation of the cAMP-dependent protein kinase (protein kinase A); and 3) the ability of CRF and AVP to increase total ACTH content and secretion in a synergistic manner provides a demonstration in normal pituitary cells that protein kinases C and A may interact in a unidirectional manner to regulate ACTH biosynthesis in addition to ACTH release. This interaction may take place within, or between, individual corticotropes.  相似文献   

6.
Synthetic corticotropin-releasing factor (CRF) stimulates ACTH secretion in the clonal mouse pituitary cell strain AtT20/D16v (D16) in a dose-dependent manner with a half-maximal effect at 2×10?9M. A single dose of 5×10?9M CRF maximally stimulates the rate of ACTH secretion during the initial two hrs of treatment. During the period of maximal CRF stimulation intracellular hormone concentration declines progressively to a nadir at 4 hrs. During the ensuing 24 hrs of incubation intracellular hormone levels in CRF-stimulated cells increase gradually toward control values. Somatostatin (SRIF) inhibits the secretory response to CRF. This action of SRIF is dose-dependent with a half-maximal effect at 1×10?9M and results in decreased maximal ACTH secretion with little effect on the ED50 for CRF.  相似文献   

7.
BAY-K-8644 in low concentrations is known to stimulate, and in higher concentrations, to depress calcium-dependent ACTH secretion from mouse clonal (tumor) pituitary corticotrophs, AtT-20/D16-16 (AtT-20). In the present study, voltage-dependent inward calcium currents in these cells were potentiated by low concentrations of this compound and depressed by higher concentrations consistent with its actions on ACTH secretion. A similar relationship was demonstrated for a different but related compound, CGP 28,392. Each of BAY-K-8644's enantiomers, BAY-R(-)5417 and BAY-R(+)4407, had opposing effects upon these inward calcium currents and ACTH secretion. The (+)isomer antagonized both inward calcium currents and ACTH secretion. In contrast, the (-)enantiomer was responsible for the stimulatory effects of BAY-K-8644. Nevertheless, some antagonistic properties were noted with high concentrations of this latter enantiomer. The stimulation of ACTH secretion in AtT-20 cells by low concentrations of BAY-K-8644 can be attributed to a potentiation of voltage-activated calcium currents by one of its enantiomers, BAY-R-(-)5417. In contrast, the depression of secretion that occurs at higher concentrations is likely to be the result of the reduction of these currents by the other enantiomer (BAY-R(+)4407).  相似文献   

8.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

9.
Abstract: The effects of forskolin, an adenylate cyclase activator, were investigated on adrenocorticotropin (ACTH) secretion from AtT-20/D16-16 mouse pituitary tumor cells. Forskolin increased adenylate cyclase activity in these cells in the absence of added guanyl nu-cleotide, an effect blocked by somatostatin. Cyclic AMP synthesis and ACTH secretion increased in a concentration-dependent manner, not only in the clonal cells, but in primary cultures of rat anterior pituitary as well. Somatostatin inhibited cyclic AMP synthesis and ACTH secretion in response to forskolin. When forskolin was coapplied with corticotropin releasing factor, cyclic AMP synthesis was potentiated and ACTH secretion additive. The calcium channel blocker, nifedipine, inhibited forskolin, and 8-bromocyclic AMP stimulated ACTH secretion. These data suggest that ACTH secretion may be regulated at the molecular level by changes in cyclic AMP formation, which in turn regulate a calcium gating mechanism.  相似文献   

10.
Corticotropin releasing factor (CRF), (?) isoproterenol and vasoactive intestinal peptide (VIP) induced cyclic AMP synthesis and the release of immunoreactive adrenocorticotropin hormone (ACTH) from clonal mouse AtT-20 pituitary tumor cells. CRF and (?) isoproterenol together produced an additive increase in cyclic AMP formation but a less than additive effect on ACTH secretion. VIP with either CRF or (?) isoproterenol produced additive increases in both cyclic AMP and ACTH secretion. Forskolin, an activator of adenylate cyclase stimulated the release of ACTH suggesting that cyclic AMP mediates some of the effects of hormone-receptor activation on ACTH secretion. The action of all three receptor agonists and forskolin on ACTH release was blocked by dexamethasone treatment. The release process, but not the changes in cyclic AMP synthesis was calcium dependent with all these hormones. The calcium ionophore, A-23187, increased ACTH secretion without altering intracellular cyclic AMP content. Its effect on secretion was not additive with either CRF, (?) isoproterenol or VIP. These observations indicate that hormone-induced regulation of ACTH secretion converges at varying intracellular locations.  相似文献   

11.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

12.
Secretion of beta-endorphin from mouse pituitary AtT20 cells is stimulated by a variety of compounds that raise intracellular cAMP and Ca2+. To investigate the role of cAMP-dependent protein kinases in secretion, AtT20 cells were transfected with an expression vector coding for a regulatory (R) subunit of cAMP-dependent protein kinase containing mutations in both cAMP-binding sites. Expression of the mutant regulatory subunit in stable transformants (RAB cells) results in a dominant inhibition of cAMP-dependent protein kinase activity. Isoproterenol (1 microM) or analogs of cAMP stimulated beta-endorphin secretion from AtT20 cells, but failed to stimulate secretion in RAB cells expressing the mutant R subunit. Secretion in response to CRF (100 nM) was inhibited by 80% in these mutant clones, whereas the secretory response to vasoactive intestinal peptide (VIP; 100 nM) or phorbol ester (100 nM phorbol myristate acetate) was not inhibited by the R subunit mutation. Intracellular cAMP was elevated in response to CRF (11- to 15-fold), isoproterenol (5- to 10-fold), and VIP (4- to 8-fold) in RAB cells. Similar concentrations of VIP were required to evoke beta-endorphin secretion in either RAB cells or AtT20 cells. As with most secretagogues, VIP-induced secretion was inhibited in the presence of either EGTA or a voltage-sensitive Ca2+ channel antagonist, PN200-110. The secretory response to VIP was unaffected by down-regulation of protein kinase-C. These results suggest that CRF and isoproterenol work via cAMP-dependent protein kinase to activate beta-endorphin secretion, whereas VIP can act by a different mechanism that does not involve cAMP-dependent protein kinase or protein kinase-C.  相似文献   

13.
The corticotropin-releasing factor (CRF) analog CRF 9-41 inhibits CRF, but not forskolin or dibutyryl cyclic AMP, stimulated release of ACTH from isolated pituitary cells. CRF 9-41 also blocks CRF-stimulated accumulation of cyclic AMP in a parallel dose dependent fashion. CRF 9-41 has no effect on basal ACTH release or cAMP levels. This substantiates that the analog acts as a direct CRF antagonist and that the site of this inhibition is most likely at the level of binding of CRF to its receptor on the corticotrope. Various substances, including most prominently glucocorticoids, inhibit release of ACTH from the pituitary. In an effort to develop another class of inhibitors, Rivier et al recently synthesized analogs of corticotropin releasing factor (CRF). One among these, alpha-helical ovine CRF 9-41 blunts adrenalectomy and stress induced ACTH release in non-anesthetized rats. At micromolar concentrations, CRF 9-41, shifts rightward the dose response of isolated pituitary cells to ovine CRF. Thus, the authors suggested that CRF 9-41 acts as a competitive antagonist to CRF-induced ACTH secretion. CRF appears to act through stimulation of adenylate cyclase. To determine the potential site of action of CRF 9-41 in the activation sequence for adenylate cyclase, we studied its effects on pituitary cyclic AMP formation and ACTH secretion from dispersed anterior pituitary cells derived from normal adult rats, as well as, its interaction with cyclic nucleotide agonists.  相似文献   

14.
15.
We have found that over one-half of the total cell surface 125I-insulin-like growth factor I (IGF-I) binding to BHK cells represents binding to IGF binding proteins (IGFBPs) rather than to the IGF-I receptor. In addition to a number of secreted IGFBPs, we have now characterized two cell-associated IGFBPs with unique characteristics. The cell-associated IGFBPs have molecular weights of 30,000 (30K) and 25,000 (25K), as determined by the Western ligand blot technique. IGFBP-30K is located at the cell surface and can be readily labeled by affinity cross-linking with 125I-IGF-I. Surface expression of IGFBP-30K increases 5.4 +/- 1.2-fold (n = 11) with serum starvation. This induction is fully evident by 4 h, plateauing by 24 h, and is completely inhibitable by cycloheximide. The fasting-induced increase in IGFBP-30K is inhibited by IGF-I and by des-IGF-I and, to a lesser extent, by insulin. Unlike cell-associated IGFBP-30K, secretion of IGFBP was stimulated (6.8 +/- 0.5-fold, n = 2) by IGF-I, whereas IGFBP secretion was inhibited 54% by insulin. These results demonstrate coordinate regulation of IGFBP by serum starvation and IGF-I, such that at low concentrations of IGF-I, cell surface binding protein increases whereas binding protein secretion decreases. At high concentrations of IGF-I, IGFBP secretion increases and cell surface IGF-I receptor, as well as IGFBP, decreases. Taken together, these regulatory events regulate the availability of IGF-I for biologic signalling.  相似文献   

16.
The present study was designed to assess the effect of okadaic acid (OA), a protein phosphatase inhibitor, on aldosterone secretion in response to angiotensin II (AII), adrenocorticotropin (ACTH) and rises in external potassium concentration (K+). AII (10nM) caused a 20-fold increase in aldosterone production and OA reduced this response by 45%. ACTH (10nM) caused an 8.6-fold increase in aldosterone secretion and OA reduced this by 83%. Increasing K+ concentration from 3 to 12mM caused a 13-fold increase in aldosterone production, which OA inhibited by 36%. These results suggest that protein phosphatases participate in the control of adrenal steroid production, even though ACTH, AII and K+ act via different intracellular messenger systems.  相似文献   

17.
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that is inhibited by adrenocorticotropic hormone (ACTH) at picomolar concentrations. Inhibition of IAC may be a critical step in depolarization-dependent Ca2+ entry leading to cortisol secretion. In whole-cell patch clamp recordings from AZF cells, we have characterized properties of IAC and the signalling pathway by which ACTH inhibits this current. IAC was identified as a voltage-gated, outwardly rectifying, K(+)-selective current whose inhibition by ACTH required activation of a pertussis toxin-insensitive GTP binding protein. IAC was selectively inhibited by the cAMP analogue 8-(4- chlorophenylthio)-adenosine 3':5'-cyclic monophosphate (8-pcpt-cAMP) with an IC50 of 160 microM. The adenylate cyclase activator forskolin (2.5 microM) also reduced IAC by 92 +/- 4.7%. Inhibition of IAC by ACTH, 8-pcpt-cAMP and forskolin was not prevented by the cAMP-dependent protein kinase inhibitors H-89 (5 microM), cAMP-dependent protein kinase inhibitor peptide (PKI[5-24]) (2 microM), (Rp)-cAMPS (500 microM), or by the nonspecific protein kinase inhibitor staurosporine (100 nM) applied externally or intracellularly through the patch pipette. At the same concentrations, these kinase inhibitors abolished 8-pcpt-cAMP-stimulated A-kinase activity in AZF cell extracts. In intact AZF cells, 8-pcpt-cAMP activated A-kinase with an EC50 of 77 nM, a concentration 2,000-fold lower than that inhibiting IAC half maximally. The active catalytic subunit of A-kinase applied intracellularly through the recording pipette failed to alter functional expression of IAC. The inhibition of IAC by ACTH and 8-pcpt- cAMP was eliminated by substituting the nonhydrolyzable ATP analogue AMP-PNP for ATP in the pipette solution. Penfluridol, an antagonist of T-type Ca2+ channels inhibited 8-pcpt-cAMP-induced cortisol secretion with an IC50 of 0.33 microM, a concentration that effectively blocks Ca2+ channel in these cells. These results demonstrate that IAC is a K(+)-selective current whose gating is controlled by an unusual combination of metabolic factors and membrane voltage. IAC may be the first example of an ionic current that is inhibited by cAMP through an A-kinase-independent mechanism. The A-kinase-independent inhibition of IAC by ACTH and cAMP through a mechanism requiring ATP hydrolysis appears to be a unique form of channel modulation. These findings suggest a model for cortisol secretion wherein cAMP combines with two separate effectors to activate parallel steroidogenic signalling pathways. These include the traditional A-kinase-dependent signalling cascade and a novel pathway wherein cAMP binding to IAC K+ channels leads to membrane depolarization and Ca2+ entry. The simultaneous activation of A-kinase- and Ca(2+)-dependent pathways produces the full steroidogenic response.  相似文献   

18.
Corticotropin-releasing factor (CRF) and both human pancreatic growth hormone-releasing factor (hp-GRF) and rat hypothalamic GRF (rh-GRF) stimulated ACTH release from neoplastic AtT-20 mouse pituitary tumor cells in a dose-dependent fashion, with CRF inducing a 10-fold increase and GRF a maximal increment of approximately one-half that of CRF. Neither rh-GRF nor hp-GRF induced ACTH release in normal anterior pituitary cells. Pretreatment with either dexamethasone or somatostatin prior to the addition of rh-GRF inhibited the increase in ACTH release. Both ovine CRF and rh-GRF stimulated adenosine 3,5-monophosphate production in AtT-20 cells. The weak but clearly discernible effect of GRF on ACTH release from AtT-20 cells may be due to an abnormality in the AtT-20 cell receptor.  相似文献   

19.
The role of extracellular Ca2+ in pituitary hormone release was studied in primary cultures of rat anterior pituitary cells. The basal levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH), and adrenocorticotropin (ACTH) secretion were independent of extracellular Ca2+ concentration ([Ca2+]e). In contrast, the basal levels of growth hormone (GH) and prolactin (PRL) release showed dose-dependent increases with elevation of [Ca2+]e, and were abolished by Ca2+-channel antagonists. Under Ca2+-deficient conditions, BaCl2 mimicked the effects of calcium on PRL and GH release but with a marked increase in potency, and also increased basal LH and FSH release in a dose-dependent manner. In the presence of normal [Ca2+]e, depolarization with K+ maximally increased cytosolic [Ca2+] ([Ca2+]i) from 100 to 185 nM and elevated LH, FSH, TSH, ACTH, PRL, and GH release by 7-, 5-, 4-, 3-, 2-, and 1.5-fold, respectively. These effects of KCl were abolished in Ca2+-deficient medium or in the presence of the Ca2+-channel antagonist, Co2+, and were diminished by the dihydropyridine Ca2+-channel antagonist, nifedipine. The Ca2+-channel agonist BK 8644 (100 nM) enhanced the hormone-releasing actions of 25 mM KCl upon PRL, LH, FSH, GH, TSH, and ACTH by 2.3-, 2.0-, 1.8-, 1.7-, 1.6-, and 1.4-fold, respectively. The dose- and voltage-dependent actions of BK 8644 were specific for individual cell types; BK 8644 enhanced GH, PRL, TSH, LH, and ACTH secretion in the absence of any depolarizing stimulus, with ED50 values of 8, 10, 150, 200, and 400 nM, respectively. However, in the presence of 50 mM KCl, the ED50 values for BK 8644 were 1.5, 2, 3, 5, and 7 nM for GH, PRL, ACTH, TSH, and LH, respectively. [3H]BK 8644 bound specifically to pituitary membranes with Kd values of 0.8 nM and concentrations of about 900 channels per cell. These observations provide evidence for the presence and participation of voltage-sensitive calcium channels in the secretion of all five populations of anterior pituitary cells.  相似文献   

20.
Temporal characteristics of ACTH and beta-endorphin secretion induced by bovine hypothalamic CRF-A (void volume) and CRF-B (Kav = 0.583) separated by Sephadex G-100 were compared to those of synthetic ovine or rat CRF, sauvagine and vasopressin. Dispersed cells or minced fragments of rat adenohypophyses perifused in a column were exposed to various secretagogues, and ACTH and/or beta-endorphin concentrations of the effluent were measured by radioimmunoassays. CRF-A or CRF-B induced an immediate brisk rise of ACTH and beta-endorphin within 1 min after initiation of CRF perifusion. The maximum rate of ACTH or beta-endorphin secretion was reached 1-2 min later. Hormone secretion persisted throughout a 10-min exposure to these secretagogues. More than 80% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with bovine CRF occurred during exposure to CRF. With 10-min perifusion with 300 ng/ml ovine or rat CRF, the onset of the major CRF-stimulated ACTH or beta-endorphin secretion was markedly delayed compared to that following bovine CRF. During perifusion with ovine or rat CRF, a modest slow increase in ACTH or beta-endorphin secretion was observed. More than 60-70% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with rat or ovine CRF occurred after CRF withdrawal. The ACTH secretory patterns for sauvagine were very similar to those for synthetic rat or ovine CRF. These results suggest some qualitative differences between partially purified bovine CRF and synthetic ovine or rat CRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号