首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We studied dipeptidyl peptidase IV (DPP-IV, CD26) expression in different T helper cells and serum soluble DPP-IV/sCD26 levels in rheumatoid arthritis (RA) patients, correlated these with disease activity score (DAS), and examined how they were affected by different therapies, conventional or biological (anti-TNF, anti-CD20 and anti-IL6R or Ig-CTLA4). The percentage of CD4+CD45R0+CD26- cells was greatly reduced in patients (up to 50%) when compared with healthy subjects. Three other subsets of CD4 cells, including a CD26high Th1-associated population, changed variably with therapies. Data from these subsets (frequency and staining density) significantly correlated with DAS28 or DAS28 components but different in each group of patients undergoing the different therapies. Th17 and Th22 subsets were implicated in RA as independent CCR4+ and CCR4- populations each, with distinct CD26 expression, and were targeted with varying efficiency by each therapy. Serum DPP-IV activity rather than sCD26 levels was lower in RA patients compared to healthy donors. DPP-IV and sCD26 serum levels were found related to specific T cell subsets but not to disease activity. We conclude that, according to their CD26 expression, different cell subsets could serve to monitor RA course, and an uncharacterized T helper CD26- subset, not targeted by therapies, should be monitored for early diagnosis.  相似文献   

2.

Introduction

CD4+ T cells express K2P5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K2P5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K2P5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients.

Methods

Expression levels of K2P5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K2P5.1.

Results

K2P5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K2P5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K2P5.1 expression to disease activity parameters during a longitudinal follow-up for six months.

Conclusions

Disease activity in RA patients correlates strongly with K2P5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K2P5.1 as a potential biomarker for disease activity and differential diagnosis.  相似文献   

3.
Clonal expansion of CD4+CD28- T cells is a characteristic finding in patients with rheumatoid arthritis (RA). Expanded CD4+ clonotypes are present in the peripheral blood, infiltrate into the joints, and persist for years. CD4+CD28- T cells are oligoclonal lymphocytes that are rare in healthy individuals but are found in high percentages in patients with chronic inflammatory diseases. The size of the peripheral blood CD4+CD28- T-cell compartment was determined in 42 patients with RA and 24 healthy subjects by two-color FACS analysis. The frequency of CD4+CD28- T cells was significantly higher in RA patients than in healthy subjects. Additionally, the number of these cells was significantly higher in patients with extra-articular manifestations and advanced joint destruction than in patients with limited joint manifestations. The results suggest that the frequency of CD4+CD28- T cells may be a marker correlating with extra-articular manifestations and joint involvement.  相似文献   

4.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation triggered by infiltrating CD4 lymphocytes. The positioning and activation of lymphocyte in inflamed synovial tissues are dependent on a number of factors including their chemokine receptor expression profile. We aimed to investigate which chemokine receptors pattern correlate with serum cytokine levels and with disease activity. Forty patients with RA (34 female and 6 male) with age range from 21 to 68 years were included. Twenty healthy volunteers (16 female and 4 male) with matched age (range 21–48 years) were served as healthy controls (HCs). Expression of chemokine receptors (CCR5, CX3CR1 and CCR7) together with the apoptosis-related marker (CD95) was analyzed using three-color flow cytometry analysis after gating on CD4+ peripheral blood lymphocytes. Plasma levels of IL-6, IL-10, IL-12 and TNF-α cytokines were measured in all participants using ELISA. Disease activity score (DAS28-CRP) system was assessed and active disease was defined as DAS28 ⩾3.2. Twenty-five (62.4%) patients were classified as active RA (ARA) and 15 (37.5%) patients with inactive RA (IRA). Percentages of CD4+ lymphocytes expressing CD95 with either of CCR7 or CCR5 were significantly higher in ARA compared to IRA and HCs groups, while the expression of CX3CR1 on T-cells was found significantly lower in both CD95 and CD95+ T-cells in RA groups than HC. Percentages of CD4+CD95+CCR7+ cells correlated positively with IL-6 (r = 0.390). Whereas CD4+CD95+CX3CR1+ were negatively correlated with TNF-α (r = −0.261). Correlation of CD4+CD95+CCR7+ T cell subset with disease activity and inflammatory cytokines suggests a role for this cell subset in the pathogenesis of RA. Further investigation will be required to fully characterize this cell subset and its role in disease progression.  相似文献   

5.

Introduction

Circulating CD4 T cells expressing CXCR5, ICOS and/or PD-1 are counterparts of follicular helper T cells (Tfh). There are three subpopulations of circulating Tfh (cTfh): CXCR5 + CXCR3 + CCR6- (Tfh-Th1), CXCR5 + CXCR3-CCR6- (Tfh-Th2) and CXCR5 + CXCR3-CCR6+ (Tfh-Th17). Our objective was to study the B cell helping capacity of cTfh subsets, and examine their frequency in Rheumatoid Arthritis (RA) patients, together with the frequency of circulating plasmablasts (CD19 + CD20-CD38high).

Methods

Peripheral blood was drawn from RA patients with active disease (RA-a, DAS28 >2.6) (n = 17), RA in remission (RA-r, DAS28 <2.6) (n = 17) and healthy controls (HC) (n = 34). cTfh and plasmablast frequencies were determined by flow cytometry. Cocultures of sorted CD4 + CXCR5+ T cell subpopulations were established with autologous CD19 + CD27- naïve B cells of HC, and concentrations of IgG, A and M were measured in supernatants.

Results

Isolated Tfh-Th2 and Tfh-Th17 but not Tfh-Th1 cells, induced naïve B cells to secrete IgG and IgA. The frequency of CXCR5+ cells gated for CD4+ T cells was not different among HC, RA-a and RA-r. In contrast, both RA-a and RA-r patients demonstrated an increased frequency of CD4 + CXCR5 + ICOS+ T cells and augmented (%Tfh-Th2 + %Tfh-Th17)/%Tfh-Th1 ratio as compared with HC. In addition, RA-a but not RA-r patients, showed an increased frequency of circulating plasmablasts.

Conclusion

Both RA-a and RA-r patients demonstrate an increased frequency of cTfh and overrepresentation of cTfh subsets bearing a B cell helper phenotype, suggesting that altered germinal center dynamics play a role in RA pathogenesis. In contrast, only RA-a patients show an increased proportion of circulating plasmablasts.  相似文献   

6.

Introduction

Interleukin (IL)-21 is a member of type I cytokine family. Recent studies indicate that IL-21 can promote T follicular helper (Tfh) cell differentiation and survival, a specialized T cell subset which provides help for B cell. It can also regulate the activation, proliferation and differentiation of human B cell and immunoglobulin (Ig) production as well as isotype switching of plasma cell. Rheumatoid arthritis (RA) is characterized by auto-antibodies overproduction such as rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibody, suggesting a pivotal role of Tfh cell and B cell in the pathogenesis of RA. This study aimed to investigate whether IL-21 had a regulatory effect on Tfh cell and B cell in RA.

Methods

Serum IL-21 concentrations were measured by ELISA. The correlations between serum IL-21 levels and clinical features of RA patients were analyzed by Spearman''s rank test. The percentages of Tfh-like cells, IL-21 receptor (R) expression on Tfh-like cells and B cells in peripheral blood (PB) were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) were stimulated by rIL-21 (100 ng/ml) in the presence or absence of anti-CD40 and/or anti-IgM, and changes of IL-21R, activation-associated surface markers (CD25, CD69 and CD40), the proliferation, apoptosis and differentiation of B cells were analyzed by flow cytometry. Production of IgG and IgM in the culture supernatants was determined by ELISA.

Results

The results showed that the serum IL-21 levels in RA patients were significantly higher than that of healthy controls (HC). IL-21 concentrations were positively correlated with 28-joint count disease activity score (DAS28) and anti-CCP antibody in RA patients with high IL-21 levels. Furthermore, the frequencies of peripheral CXCR5+PD-1+CD4+ Tfh-like cells markedly increased in RA patients and the percentages of Tfh-like cells were positively correlated with DAS28 and anti-CCP antibody levels. Moreover, elevated IL-21 levels were also correlated with the frequencies of Tfh-like cells. IL-21R expression on both Tfh-like cells and B cells were significantly enhanced in RA patients. In cultures vitro, exogenous IL-21 upregulated IL-21R expression and activation-associated surface markers on B cells and promoted more B cell proliferation in RA than in HC. This IL-21-mediated effect could be reversed by IL-21R-specific neutralizing antibody. Importantly, IL-21 promoted more differentiation of B cell into plasmablast and higher levels of IgG and IgM production in RA than in HC.

Conclusions

Increased serum IL-21 levels in RA patients correlate with DAS28, anti-CCP antibody and frequencies of Tfh-like cells. IL-21 supports B cell activation, proliferation and antibody secretion via IL-21R pathway. Thus, IL-21 may be involved in the pathogenesis of RA and antagonizing IL-21 could be a novel strategy for the therapy of RA.  相似文献   

7.
Wogonin exerts anti‐tumour activities via multiple mechanisms. We have identified that high‐dose wogonin (50 or 100 mg/kg) could inhibit the growth of transplanted tumours by directly inducing tumour apoptosis and promoting DC, T and NK cell recruitment into tumour tissues to enhance immune surveillance. However, wogonin (20–50 μM) ex vivo prevents inflammation by inhibiting NF‐κB and Erk signalling of macrophages and epithelial cells. It is elusive whether high‐dose wogonin promotes or prevents inflammation. To investigate the effects of high‐dose wogonin on murine colitis induced by dextran sodium sulphate (DSS), mice were co‐treated with DSS and various doses of wogonin. Intraperitoneal administration of wogonin (100 mg/kg) exacerbated DSS‐induced murine colitis. More CD4+ CD44+ and CD8+ CD44+ cells were located in the inflamed colons in the wogonin (100 mg/kg) treatment group than in the other groups. Frequencies of CD4+ CD25+ CD127? and CD4+ CD25+ Foxp3+ cells in the colons and spleen respectively, were reduced by wogonin treatment. Ex vivo stimulations with high‐dose wogonin (50–100 μg/ml equivalent to 176–352 μM) could synergize with IL‐2 to promote the functions of CD4+ and CD8+ cells. However, regulatory T cell induction was inhibited. Wogonin stimulated the activation of NF‐κB and Erk but down‐regulated STAT3 phosphorylation in the CD4+ T cells. Wogonin down‐regulated Erk and STAT3‐Y705 phosphorylation in the regulatory T cells but promoted NF‐κB and STAT3‐S727 activation. Our study demonstrated that high‐dose wogonin treatments would enhance immune activity by stimulating the effector T cells and by down‐regulating regulatory T cells.  相似文献   

8.
The imbalance of Th17/Treg cell populations has been suggested to be involved in the regulation of rheumatoid arthritis (RA) pathogenesis; however, the mechanism behind this phenomenon remains unclear. Recent studies have shown how microRNAs (miRNAs) are important regulators of immune responses and are involved in the development of a variety of inflammatory diseases, including RA. In this study, we demonstrated that the frequencies of CD3+CD4+IL‐17+Th17 cells were significantly higher, and CD4+CD25+FOXP3+ Treg cells significantly lower in peripheral blood mononuclear cells from RA patients. Detection of cytokines from RA patients revealed an elevated panel of pro‐inflammatory cytokines, including IL‐17, IL‐6, IL‐1β, TNF‐α and IL‐22, which carry the inflammatory signature of RA and are crucial in the differentiation and maintenance of pathogenic Th17 cells and dysfunction of Treg cells. However, the level of miR‐21 was significantly lower in RA patients, accompanied by the increase in STAT3 expression and activation, and decrease in STAT5/pSTAT5 protein and Foxp3 mRNA levels. Furthermore, lipopolysaccharide stimulation up‐regulated miR‐21 expression from healthy controls, but down‐regulated miR‐21 expression from RA patients. Therefore, we speculate that miR‐21 may be part of a negative feedback loop in the normal setting. However, miR‐21 levels decrease significantly in RA patients, suggesting that this feedback loop is dysregulated and may contribute to the imbalance of Th17 and Treg cells. MiR‐21 may thus serve as a novel regulator in T‐cell differentiation and homoeostasis, and provides a new therapeutic target for the treatment of RA.  相似文献   

9.
10.

Introduction

Anti-citrullinated peptide antibodies are found in rheumatoid arthritis (RA) patients with HLA-DRβ chains encoding the shared epitope (SE) sequence. Citrullination increases self-antigen immunogenicity, through increased binding affinity to SE-containing HLA-DR molecules. To characterise T-cell autoreactivity towards citrullinated self-epitopes, we profiled responses of SE+ healthy controls and RA patients to citrullinated and unmodified epitopes of four autoantigens.

Methods

We compared T-cell proliferative and cytokine responses to citrullinated and native type II collagen 1,237 to 1,249, vimentin 66 to 78, aggrecan 84 to 103 and fibrinogen 79 to 91 in six SE+ healthy controls and in 21 RA patients with varying disease duration. Cytokine-producing cells were stained after incubation with peptide in the presence of Brefeldin-A.

Results

Although proliferative responses were low, IL-6, IL-17 and TNF were secreted by CD4+ T cells of SE+ RA patients and healthy controls, as well as IFNγ and IL-10 secreted by RA patients, in response to citrullinated peptides. Of the epitopes tested, citrullinated aggrecan was most immunogenic. Patients with early RA were more likely to produce IL-6 in response to no epitope or to citrullinated aggrecan, while patients with longstanding RA were more likely to produce IL-6 to more than one epitope. Cytokine-producing CD4+ T cells included the CD45RO+ and CD45RO- and the CD28+ and CD28- subsets in RA patients.

Conclusion

Proinflammatory cytokines were produced by CD4+ T cells in SE+ individuals in response to citrullinated self-epitopes, of which citrullinated aggrecan was most immunogenic. Our data suggest that the T-cell response to citrullinated self-epitopes matures and diversifies with development of RA.  相似文献   

11.
Secretion of the proinflammatory cytokine Interleukin-17A (IL-17A) is the hallmark of a unique lineage of CD4 T cells designated Th17 cells, which may play a crucial role in the pathogenesis of rheumatoid arthritis (RA) and many autoimmune diseases. Recently, IL-17-producing cells other than T cells have been described, including diverse innate immune cells. Here, we show that the cellular sources of IL-17A in RA include a significant number of non-T cells. Multicolour fluorescence analysis of IL-17-expressing peripheral blood mononuclear cells (PBMC) revealed larger proportions of IL-17+CD3- non-T cells in RA patients than in healthy controls (constitutive, 13.6% vs. 8.4%, and after stimulation with PMA/ionomycin 17.4% vs. 7.9% p < 0.001 in both cases). The source of IL-17 included CD3-CD56+ NK cells, CD3-CD14+ myeloid cells as well as the expected CD3+CD4+ Th17 cells and surprisingly a substantial number of CD3-CD19+ B cells. The presence of IL-17A-expressing B cells was confirmed by specific PCR of peripheral MACS-sorted CD19+ B cells, as well as by the analysis of different EBV-transformed B cell lines. Here we report for the first time that in addition to Th17 cells and different innate immune cells B cells also contribute to the IL-17A found in RA patients and healthy controls.  相似文献   

12.
The LAIR-1 receptor is expressed on a majority of mononuclear leukocytes. It is used as a biomarker when testing synovial fluid for evidence of rheumatoid arthritis (RA). The primary objective of this study was to measure T cell- and monocyte/macrophage-specific LAIR-1 expression in RA patients and compare this to LAIR-1 expression in osteoarthritis (OA) patients and healthy individuals. LAIR-1 expression was significantly decreased in circulating CD4+ T cells in RA patients compared to both OA patients and healthy individuals. In contrast, LAIR-1 is high in CD14+ monocytes and local CD68+ macrophages in synovial tissues from RA patients. Upon stimulation with TNF-α, LAIR-1 expression decreased in T-helper (Th)1 and Th2 CD4+ T cells from healthy donors. These results indicate that LAIR-1 may exert different functions on T cells and monocytes/macrophages and suggest that LAIR-1 may be a novel therapeutic target for the treatment of RA.  相似文献   

13.
The risk for cardiovascular (CV) disease is increased in rheumatoid arthritis (RA) but data on the burden of coronary atherosclerosis in patients with RA are lacking. We conducted a retrospective case-control study of Olmsted County (MN, USA) residents with RA and new-onset coronary artery disease (CAD) (n = 75) in comparison with age-and sex-matched controls with newly diagnosed CAD (n = 128). Angiographic scores of the first coronary angiogram and data on CV risk factors and CV events on follow-up were obtained by chart abstraction. Patients with RA were more likely to have multi-vessel coronary involvement at first coronary angiogram compared with controls (P = 0.002). Risk factors for CAD including diabetes, hypertension, hyperlipidemia, and smoking history were not significantly different in the two cohorts. RA remained a significant risk factor for multi-vessel disease after adjustment for age, sex and history of hyperlipidemia. The overall rate of CV events was similar in RA patients and controls; however, there was a trend for increased CV death in patients with RA. In a nested cohort of patients with RA and CAD (n = 27), we measured levels of pro-inflammatory CD4+CD28null T cells by flow cytometry. These T cells have been previously implicated in the pathogenesis of CAD and RA. Indeed, CD4+CD28null T cells were significantly higher in patients with CAD and co-existent RA than in controls with stable angina (P = 0.001) and reached levels found in patients with acute coronary syndromes. Patients with RA are at increased risk for multi-vessel CAD, although the risk of CV events was not increased in our study population. Expansion of CD4+CD28null T cells in these patients may contribute to the progression of atherosclerosis.  相似文献   

14.
Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.  相似文献   

15.
CD3+CD4+CD28null and CD3+CD8+CD28null T cells are enriched in patients with immune-mediated diseases compared with healthy controls. This study shows that CD4+CD28null T cells express Toll-like receptors recognizing bacterial lipopolysaccharides in ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. In ankylosing spondylitis, TLR4 (23.1 ± 21.9%) and, to a smaller extent, TLR2 (4.1 ± 5.8%) were expressed on CD4+CD28null T cells, whereas expression was negligible on CD4+CD28+ and CD8+ T cells. CD4+CD28null T cells produced perforin upon stimulation with lipopolysaccharide, and this effect was enhanced by autologous serum or recombinant soluble CD14. Perforin production could be prevented with blocking antibodies directed against CD14 or TLR4. Incubation of peripheral blood mononuclear cells with tumour necrosis factor alpha led to an upregulation of TLR4 and TLR2 on CD4+CD28null T cells in vitro, and treatment of patients with antibodies specifically directed against tumour necrosis factor alpha resulted in decreased expression of TLR4 and TLR2 on CD4+CD28null T cells in vivo. We describe here a new pathway for direct activation of cytotoxic CD4+ T cells by components of infectious pathogens. This finding supports the hypothesis that CD4+CD28null T cells represent an immunological link between the innate immune system and the adaptive immune system.  相似文献   

16.
Liu Y  Yang B  Ma J  Wang H  Huang F  Zhang J  Chen H  Wu C 《Cellular immunology》2011,267(2):102-108
Interleukin 21 exerts a variety of regulatory effects on both innate and adaptive immune cells. Although the suppressive effect of IL-21 via the induction of IL-10 in mouse model has been defined, the inhibitory effect of IL-21 in humans is not well understood. In the present study, we showed that IL-21 induced IL-10 production by human naive CD4+ T cells. Most of the IL-10-producing CD4+ T cells did not co-express IFN-γ. IL-21 increased the expression of IL-21R on activated naïve CD4+ T cells. Further analysis indicated that IL-21 induced phosphorylation of STAT1, STAT3 and STAT5 in activated naïve CD4+ T cells. In addition, IL-21 maintained the expression of CD16 on monocytes via the production of IL-10 by human naïve CD4+ T cells. Taken together, our data indicated that IL-21 had a modulating effect on monocytes at least in part by inducing IL-10 production.  相似文献   

17.
18.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by progressive joint destruction associated with increased pro-inflammatory mediators. In inflammatory microenvironments, exogenous ATP (eATP) is hydrolyzed to adenosine, which exerts immunosuppressive effects, by the consecutive action of the ectonucleotidases CD39 and CD73. Mature B cells constitutively express both ectonucleotidases, converting these cells to potential suppressors. Here, we assessed CD39 and CD73 expression on B cells from treated or untreated patients with RA. Neither the frequency of CD73+CD39+ and CD73-CD39+ B cell subsets nor the levels of CD73 and CD39 expression on B cells from untreated or treated RA patients showed significant changes in comparison to healthy controls (HC). CpG+IL-2-stimulated B cells from HC or untreated RA patients increased their CD39 expression, and suppressed CD4+ and CD8+ T cell proliferation and intracellular TNF-production. A CD39 inhibitor significantly restored proliferation and TNF-producing capacity in CD4+ T cells, but not in CD8+ T cells, from HC and untreated RA patients, indicating that B cells from untreated RA patients conserved CD39-mediated regulatory function. Good responder patients to therapy (R-RA) exhibited an increased CD39 but not CD73 expression on B cells after treatment, while most of the non-responder (NR) patients showed a reduction in ectoenzyme expression. The positive changes of CD39 expression on B cells exhibited a negative correlation with disease activity and rheumatoid factor levels. Our results suggest modulating the ectoenzymes/ADO pathway as a potential therapy target for improving the course of RA.  相似文献   

19.

Background

STAT3 activation is frequently detected in breast cancer and this pathway has emerged as an attractive molecular target for cancer treatment. Recent experimental evidence suggests ALDH-positive (ALDH+), or cell surface molecule CD44-positive (CD44+) but CD24-negative (CD24) breast cancer cells have cancer stem cell properties. However, the role of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24 subpopulations of breast cancer cells is unknown.

Methods and Results

We examined STAT3 activation in ALDH+ and ALDH+/CD44+/CD24 subpopulations of breast cancer cells by sorting with flow cytometer. We observed ALDH-positive (ALDH+) cells expressed higher levels of phosphorylated STAT3 compared to ALDH-negative (ALDH) cells. There was a significant correlation between the nuclear staining of phosphorylated STAT3 and the expression of ALDH1 in breast cancer tissues. These results suggest that STAT3 is activated in ALDH+ subpopulations of breast cancer cells. STAT3 inhibitors Stattic and LLL12 inhibited STAT3 phosphorylation, reduced the ALDH+ subpopulation, inhibited breast cancer stem-like cell viability, and retarded tumorisphere-forming capacity in vitro. Similar inhibition of STAT3 phosphorylation, and breast cancer stem cell viability were observed using STAT3 ShRNA. In addition, LLL12 inhibited STAT3 downstream target gene expression and induced apoptosis in ALDH+ subpopulations of breast cancer cells. Furthermore, LLL12 inhibited STAT3 phosphorylation and tumor cell proliferation, induced apoptosis, and suppressed tumor growth in xenograft and mammary fat pad mouse models from ALDH+ breast cancer cells. Similar in vitro and tumor growth in vivo results were obtained when ALDH+ cells were further selected for the stem cell markers CD44+ and CD24.

Conclusion

These studies demonstrate an important role for STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24 subpopulations of breast cancer cells which may have cancer stem cell properties and suggest that pharmacologic inhibition of STAT3 represents an effective strategy to selectively target the cancer stem cell-like subpopulation.  相似文献   

20.

Purpose

To explore whether IRAK1 and IRAK4 are involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease.

Methods

Thirty-nine VKH patients and thirty-two healthy controls were included in this study. The mRNA levels of IRAK1 and IRAK4 from active VKH patients, inactive VKH patients, and normal controls in peripheral blood mononuclear cells (PBMCs) were detected using real-time quantitative PCR. CD4+T cells were purified from PBMCs obtained from active VKH patients and normal controls. The effect of IRAK1/4 inhibition on CD4+T cell proliferation following stimulation with IL-18 or IL-1β was measured using a modified MTT assay. CD4+T cell expression of IFN-γ and IL-17 were detected by flow cytometry (FCM) and enzyme-linked immunosorbent assay (ELISA). The effect of IRAK1/4 inhibition on NF-κB, STAT1, and STAT3 activation was detected by FCM.

Results

The mRNA levels of IRAK1 and IRAK4 were both significantly increased in active VKH patients compared to inactive VKH patients and healthy controls. No difference in the IRAK1 or IRAK4 mRNA level could be detected between inactive patients and healthy controls. After incubation with IRAK1/4 inhibitor, the proliferation of CD4+T cells was inhibited both in the active VKH patients and in the healthy controls. IRAK1/4 inhibition was also associated with a decreased expression of IFN-γ and IL-17. Phosphorylation of NF-κB, STAT1, and STAT3 in CD4+T from healthy controls was significantly decreased after inhibition of IRAK1/4.

Conclusions

High mRNA levels of IRAK1 and IRAK4 correlated with VKH disease activity. IRAK1 and IRAK4 play a role in the activation and proliferation of CD4+T cells and the higher expression observed in VKH may contribute to the pathogenesis of this blinding condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号