首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
Scaffold proteins are believed to enhance specificity in cell signaling when different pathways share common components. The prototype scaffold Ste5 binds to multiple components of the Saccharomyces cerevisiae mating pheromone response pathway, thereby conducting the mating signal to the Fus3 mitogen-activated protein kinase (MAPK). Some of the kinases that Ste5 binds to, however, are also shared with other pathways. Thus, it has been presumed that Ste5 prevents its bound kinases from transgressing into other pathways and protects them from intrusions from those pathways. Here we found that Fus3MAPK required Ste5 scaffolding to receive legitimate signals from the mating pathway as well as misdirected signals leaking from other pathways. Furthermore, increasing the cellular concentration of active Ste5 enhanced the channeling of inappropriate stimuli to Fus3. This aberrant signal crossover resulted in the erroneous induction of cell cycle arrest and mating. In contrast to Fus3, the Kss1 MAPK did not require Ste5 scaffolding to receive either authentic or leaking signals. Furthermore, the Ste11 kinase, once activated via Ste5, was able to signal to Kss1 independently of Ste5 scaffolding. These results argue that Ste5 does not act as a barrier that actively prevents signal crossover to Fus3 and that Ste5 may not effectively sequester its activated kinases away from other pathways. Rather, we suggest that specificity in this network is promoted by the selective activation of Ste5 and the distinct requirements of the MAPKs for Ste5 scaffolding.  相似文献   

5.
Signal-transduction networks can display complex dynamic behavior such as oscillations in the activity of key components [1-6], but it is often unclear whether such dynamic complexity is actually important for the network's regulatory functions [7, 8]. Here, we found that the mitogen-activated protein kinase (MAPK) Fus3, a key regulator of the yeast mating-pheromone response, undergoes sustained oscillations in its phosphorylation and activation state during continuous pheromone exposure. These MAPK activity oscillations led to corresponding oscillations in mating-gene expression. Oscillations in MAPK activity and gene expression required the negative regulator of G protein signaling Sst2 and partially required the MAPK phosphatase Msg5. Peaks in Fus3 activation correlated with periodic rounds of cell morphogenesis, with each peak preceding the formation of an additional mating projection. Preventing projection formation did not eliminate MAPK oscillation, but preventing MAPK oscillation blocked the formation of additional projections. A mathematical model was developed that reproduced several features of the observed oscillatory dynamics. These observations demonstrate a role for MAPK activity oscillation in driving a periodic downstream response and explain how the pheromone signaling pathway, previously thought to desensitize after 1-3 hr, controls morphology changes that continue for a much longer time.  相似文献   

6.
Signal transduction through mitogen-activated protein kinase (MAPK) cascades is thought to occur through the assembly of macromolecular complexes. We quantified the abundance of complexes in the cytoplasm among the MAPKs Ste11, Ste7, Fus3 and the scaffold protein Ste5 in yeast pheromone signalling using fluorescence cross-correlation spectroscopy (FCCS). Significant complex concentrations were observed that remained unchanged on pheromone stimulation, demonstrating that global changes in complex abundances do not contribute to the transmission of signal through the cytoplasm. On the other hand, investigation of the distribution of active Fus3 (Fus3(PP)) across the cytoplasm using fluorescence lifetime imaging microscopy (FLIM) revealed a gradient of Fus3(PP) activity emanating from the tip of the mating projection. Spatial partitioning of Fus3 activating kinases to this site and deactivating phosphatases in the cytoplasm maintain this Fus3(PP)-activity distribution. Propagation of signalling from the shmoo is, therefore, spatially constrained by a gradient-generating reaction-diffusion mechanism.  相似文献   

7.
The specificity and efficiency of cell signaling is largely governed by the complex formation of signaling proteins. The precise spatio-temporal control of the complex assembly is crucial for proper signaling and cell survival. Protein phosphorylation is a key mechanism of signal processing in most of cell signaling networks. Phosphatases, along with kinases, control the phosphorylation state of many proteins and thus play a critical role in the precise regulation of signaling at each stage such as activation, propagation, and adaptation. Identification and functional analysis of pathway-specific phosphatase is, therefore, crucial for the understanding of cell signaling mechanisms. Here, we have developed a novel screening strategy to identify pathway-specific phosphatases, in which the entire repertoire of cell’s phosphatases was tethered to a signaling complex and the changes in signaling response were monitored. As a model target, we have chosen the mating MAP kinase pathway in the budding yeast, which is composed of three kinases and Ste5 scaffold protein. Using this strategy, a putative Ser/Thr phosphatase, Ppq1, was identified to be mating-specific. Results show that Ppq1 down-regulates mating signaling by targeting at or upstream of the terminal MAP kinase Fus3 in the cascade. The catalytic activity of Ppq1 as a phosphatase was confirmed in vitro and is necessary for its function in the regulation of mating signaling. Overall, the data suggest that Ppq1 functions as a negative regulator of mating MAPK pathway by dephosphorylating target pathway protein(s) and plays a key role in the control of the background signaling noise.  相似文献   

8.
Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCFCdc4 and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCFCdc4 ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCFCdc4 and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCFCdc4 is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK.  相似文献   

9.
The pheromone pathway is one of the mitogen activated protein kinase (MAPK) signaling pathways identified in Saccharomyces cerevisiae and is involved in both G1 cell cycle arrest and mating of cells. Fus3 functions at a branching point for G1 cell cycle arrest and mating responses in the signaling cascade, and the Fus3 MAPK uses components of both G1 arrest and mating routes as substrates. The Ste5 is a scaffold protein of the MAPK module and is essential for the activation of Fus3. However, it is not known how Ste5 is involved in the specific activation of Fus3 in G1 arrest and mating. In this study, we characterized several G1 arrest defective Ste5 mutants to better understand the roles of Ste5 in the regulation of Fus3. The level of Fus3 increased by treatment with alpha-factor. However, the alpha-factor effects were not readily apparent in the observation of yeast cells containing G1 arrest defective ste5 mutant. This suggests that Ste5 plays an essential role in Fus3 induction. Fus3 immune kinase assay of G1 arrest defective ste5 transformants revealed that Ste5 is important for substrate specificity of Fus3 for G1 arrest and/or mating.  相似文献   

10.
11.
The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.  相似文献   

12.
Cell differentiation requires the ability to detect and respond appropriately to a variety of extracellular signals. Here we investigate a differentiation switch induced by changes in the concentration of a single stimulus. Yeast cells exposed to high doses of mating pheromone undergo cell division arrest. Cells at intermediate doses become elongated and divide in the direction of a pheromone gradient (chemotropic growth). Either of the pheromone-responsive MAP kinases, Fus3 and Kss1, promotes cell elongation, but only Fus3 promotes chemotropic growth. Whereas Kss1 is activated rapidly and with a graded dose-response profile, Fus3 is activated slowly and exhibits a steeper dose-response relationship (ultrasensitivity). Fus3 activity requires the scaffold protein Ste5; when binding to Ste5 is abrogated, Fus3 behaves like Kss1, and the cells no longer respond to a gradient or mate efficiently with distant partners. We propose that scaffold proteins serve to modulate the temporal and dose-response behavior of the MAP kinase.  相似文献   

13.

Background  

Like mammalian MAP kinases, the mating-specific Fus3 MAPK of yeast accumulates in the nuclei of stimulated cells. Because Fus3 does not appear to be subjected to active nucleo-cytoplasmic transport, it is not clear how its activation by mating pheromone effects the observed change in its localization. One possibility is that the activation of Fus3 changes its affinity for nuclear and cytoplasmic tethers.  相似文献   

14.
15.
Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration.  相似文献   

16.
In mammalian cells, Ras regulates multiple effectors, including activators of mitogen-activated protein kinase (MAPK) cascades, phosphatidylinositol-3-kinase, and guanine nucleotide exchange factors (GEFs) for RalGTPases. In S. cerevisiae, Ras regulates the Kss1 MAPK cascade that promotes filamentous growth and cell integrity, but its major function is to activate adenylyl cyclase and control proliferation and survival ([; see Figure S1 in the Supplemental Data available with this article online). Previous work hints that the mating Fus3/Kss1 MAPK cascade cross-regulates the Ras/cAMP pathway during growth and mating, but direct evidence is lacking. Here, we report that Kss1 and Fus3 act upstream of the Ras/cAMP pathway to regulate survival. Loss of Fus3 increases cAMP and causes poor long-term survival and resistance to stress. These effects are dependent on Kss1 and Ras2. Activation of Kss1 by a hyperactive Ste11 MAPKKK also increases cAMP, but mating receptor/scaffold activation has little effect and may therefore insulate the MAPKs from cross-regulation. Catalytically inactive Fus3 represses cAMP by blocking accumulation of active Kss1 and by another function also shared by Kss1. The conserved RasGEF Cdc25 is a likely control point, because Kss1 and Fus3 complexes associate with and phosphorylate Cdc25. Cross-regulation of Cdc25 may be a general way that MAPKs control Ras signaling networks.  相似文献   

17.
Kss1 and Fus3 are mitogen-activated protein kinases (MAPKs or ERKs), and Ste7 is their activating MAPK/ERK kinase (MEK), in the pheromone response pathway of Saccharomyces cerevisiae. To investigate the potential role of specific interactions between these enzymes during signaling, their ability to associate with each other was examined both in solution and in vivo. When synthesized by in vitro translation, Kss1 and Fus3 could each form a tight complex (Kd of approximately 5 nM) with Ste7 in the absence of any additional yeast proteins. These complexes were specific because neither Hog1 nor Mpk1 (two other yeast MAPKs), nor mammalian Erk2, was able to associate detectably with Ste7. Neither the kinase catalytic core of Ste7 nor the phosphoacceptor regions of Ste7 and Kss1 were necessary for complex formation. Ste7-Kss1 (and Ste7-Fus3) complexes were present in yeast cell extracts and were undiminished in extracts prepared from a ste5delta-ste11delta double mutant strain. In Ste7-Kss1 (or Ste7-Fus3) complexes isolated from naive or pheromone-treated cells, Ste7 phosphorylated Kss1 (or Fus3), and Kss1 (or Fus3) phosphorylated Ste7, in a pheromone-stimulated manner; dissociation of the high-affinity complex was shown to be required for either phosphorylation event. Deletions of Ste7 in the region required for its stable association with Kss1 and Fus3 in vitro significantly decreased (but did not eliminate) signaling in vivo. These findings suggest that the high-affinity and active site-independent binding observed in vitro facilitates signal transduction in vivo and suggest further that MEK-MAPK interactions may utilize a double-selection mechanism to ensure fidelity in signal transmission and to insulate one signaling pathway from another.  相似文献   

18.
Protein kinases are thought to mediate their biological effects through their catalytic activity. The large number of pseudokinases in the kinome and an increasing appreciation that they have critical roles in signaling pathways, however, suggest that catalyzing protein phosphorylation may not be the only function of protein kinases. Using the principle of hydrophobic spine assembly, we interpret how kinases are capable of performing a dual function in signaling. Its first role is that of a signaling enzyme (classical kinases; canonical), while its second role is that of an allosteric activator of other kinases or as a scaffold protein for signaling in a manner that is independent of phosphoryl transfer (classical pseudokinases; noncanonical). As the hydrophobic spines are a conserved feature of the kinase domain itself, all kinases carry an inherent potential to play both roles in signaling. This review focuses on the recent lessons from the RAF kinases that effectively toggle between these roles and can be “frozen” by introducing mutations at their hydrophobic spines.  相似文献   

19.
20.
Kss1 protein kinase, and the homologous Fus3 kinase, are required for pheromone signal transduction in Saccharomyces cerevisiae. In MATa haploids exposed to alpha-factor, Kss1 was rapidly phosphorylated on both Thr183 and Tyr185, and both sites were required for Kss1 function in vivo. De novo protein synthesis was required for sustained pheromone-induced phosphorylation of Kss1. Catalytically inactive Kss1 mutants displayed alpha-factor-induced phosphorylation on both residues, even in kss1 delta cells; hence, autophosphorylation is not obligatory for these modifications. In kss1 delta fus3 delta double mutants, Kss1 phosphorylation was elevated even in the absence of pheromone; thus, cross-phosphorylation by Fus3 is not responsible for Kss1 activation. In contrast, pheromone-induced Kss1 phosphorylation was eliminated in mutants deficient in two other protein kinases, Ste11 and Ste7. A dominant hyperactive allele of STE11 caused a dramatic increase in the phosphorylation of Kss1, even in the absence of pheromone stimulation, but required Ste7 for this effect, suggesting an order of function: Ste11-->Ste7-->Kss1. When overproduced, Kss1 stimulated recovery from pheromone-imposed G1 arrest. Catalytic activity was essential for Kss1 function in signal transmission, but not for its recovery-promoting activity. Kss1 was found almost exclusively in the particulate material and its subcellular fractionation was unaffected by pheromone treatment. Indirect immunofluorescence demonstrated that Kss1 is concentrated in the nucleus and that its distribution is not altered detectably during signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号