首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immune system functioning and maintenance entails costs which may limit investment into other processes such as reproduction. Yet, the proximate mechanisms and ‘currencies’ mediating the costs of immune responses remain elusive. In vertebrates, up-regulation of the innate immune system is associated with rapid phagocytic production of pro-oxidant molecules (so-called ‘oxidative burst’ responses). Oxidative burst responses are intended to eliminate pathogens but may also constitute an immunopathological risk as they may induce oxidative damage to self cells. To minimize the risk of infection and, at the same time, damage to self, oxidative burst activity must be carefully balanced. The current levels of pro- and antioxidants (i.e. the individual oxidative state) is likely to be a critical factor affecting this balance, but this has not yet been evaluated. Here, we perform an experiment on wild-caught painted dragon lizards (Ctenophorus pictus) to examine how the strength of immune-stimulated oxidative burst responses of phagocytes in whole blood relates to individual oxidative status under control conditions and during an in vivo immune challenge with Escherichia coli lipopolysaccharide (LPS). Under control conditions, oxidative burst responses were not predicted by the oxidative status of the lizards. LPS-injected individuals showed a strong increase in pro-oxidant levels and a strong decrease in antioxidant levels compared to control individuals demonstrating a shift in the pro-/antioxidant balance. Oxidative burst responses in LPS-injected lizards were positively related to post-challenge extracellular pro-oxidants (reflecting the level of cell activation) and negatively related to pre-challenge levels of mitochondrial superoxide (suggesting an immunoregulatory effect of this pro-oxidant). LPS-challenged males had higher oxidative burst responses than females, and in females oxidative burst responses seemed to depend more strongly on antioxidant status than in males. Our results confirm the idea that oxidative state may constrain the activity of the innate immune system. These constraints may have important consequences for the way selection acts on pro-oxidant generating processes.  相似文献   

2.
Telomere Variation in Xenopus laevis   总被引:1,自引:0,他引:1       下载免费PDF全文
Eukaryotic telomeres are variable at several levels, from the length of the simple sequence telomeric repeat tract in different cell types to the presence or number of telomere-adjacent DNA sequence elements in different strains or individuals. We have investigated the sequence organization of Xenopus laevis telomeres by use of the vertebrate telomeric repeat (TTAGGG)n and blot hybridization analysis. The (TTAGGG)n-hybridizing fragments, which ranged from less than 10 to over 50 kb with frequently cutting enzymes, defined a pattern that was polymorphic between individuals. BAL 31 exonuclease treatment confirmed that these fragments were telomeric. The polymorphic fragments analyzed did not hybridize to 5S RNA sequences, which are telomeric according to in situ hybridization. When telomeric fragments from offspring (whole embryos) were compared to those from the spleens of the parents, the inheritance pattern of some bands was found to be unusual. Furthermore, in one cross, the telomeres of the embryo were shorter than the telomeres of the parents’ spleen, and in another, the male’s testis telomeres were shorter than those of the male’s spleen. Our data are consistent with a model for chromosome behavior that involves a significant amount of DNA rearrangement at telomeres and suggest that length regulation of Xenopus telomeres is different from that observed for Mus spretus and human telomeres.  相似文献   

3.
Peptic ulcer disease is a gastrointestinal disorder defined by mucosal damage and free oxygen radicals associated with peptic ulcer and gastritis. Cinnamon is a traditional herb used for many diseases and it has also effects as an antioxidant, anti-inflammatory, antispasmodic and anti-ulcerative. Our research is based on oxidative stress and effects of Oleum cinnamomi on stomach, liver and kidney disorders induced by ethanol. In our experiment, 2–3 month old male Sprague–Dawley rats were used. One hour before the mucosal damage induced by 70 % ethanol, O. cinnamomi (2.5 ml/kg) was added into the groups. Gastric pH, analysis of gastric mucus and ulcer index were calculated from samples obtained from the stomach. Superoxide dismutase (SOD), malondialdehyde and catalase (CAT) levels were determined in stomach, liver and kidney homogenates and erythrocyte hemolysate. Histopathological examination of stomach, liver and kidney were determined with H&E staining. The non-treated ulcerative group showed higher scores than the control group which was treated with O. cinnamomi, when ulcer scores, gastric mucus and pH level of stomach are compared. Increased lipid peroxidation levels were observed in the liver, kidney and erythrocyte hemolysate. SOD activity was decreased in liver whereas increased in stomach of ethanol treated ulcerative groups. CAT levels were increased in stomach and liver of ethanol treated rats. Histopathological findings showed that ethanol treatment cause multiply organ damage such as stomach, liver and kidney injury. O. cinnamomi treatment protected these tissues from ethanol-induced damage. Consequently, the current investigation shows that O. cinnamomi has protective effects on ethanol-induced oxidative and mucosal damage.  相似文献   

4.
The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity.  相似文献   

5.
Blue egg coloring is attributed to biliverdin derived from the oxidative degradation of heme through catalysis by heme oxygenase (HO). The pigment is secreted into the eggshell by the shell gland. There is uncertainty as to whether the pigment is synthesized in the shell gland or in other tissues. To investigate the site of pigment biosynthesis, the expression of heme oxygenase (decycling) 1 (HMOX1), a gene encoding HO, and HO activity in liver and spleen were compared between blue-shelled chickens (n = 12) and brown-shelled chickens (n = 12). There were no significant differences in HMOX1 expression and HO activity in these tissues between the two groups. Since the liver and spleen, two important sites outside the shell gland where heme is degraded into biliverdin, CO and Fe2+, did not differ in HO expression and activity we conclude that the pigment is most likely synthesized in the shell gland.  相似文献   

6.
Steatoapoptosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and is an important factor in liver disease progression. We hypothesized that increased reactive oxygen species resulting from excess dietary fat contribute to liver disease by causing DNA damage and apoptotic cell death, and tested this by investigating the effects of feeding mice high fat or standard diets for 8 weeks. High fat diet feeding resulted in increased hepatic H2O2, superoxide production, and expression of oxidative stress response genes, confirming that the high fat diet induced hepatic oxidative stress. High fat diet feeding also increased hepatic steatosis, hepatitis and DNA damage as exemplified by an increase in the percentage of 8-hydroxyguanosine (8-OHG) positive hepatocytes in high fat diet fed mice. Consistent with reports that the DNA damage checkpoint kinase Ataxia Telangiectasia Mutated (ATM) is activated by oxidative stress, ATM phosphorylation was induced in the livers of wild type mice following high fat diet feeding. We therefore examined the effects of high fat diet feeding in Atm-deficient mice. The prevalence of apoptosis and expression of the pro-apoptotic factor PUMA were significantly reduced in Atm-deficient mice fed the high fat diet when compared with wild type controls. Furthermore, high fat diet fed Atm−/− mice had significantly less hepatic fibrosis than Atm+/+ or Atm+/− mice fed the same diet. Together, these data demonstrate a prominent role for the ATM pathway in the response to hepatic fat accumulation and link ATM activation to fatty liver-induced steatoapoptosis and fibrosis, key features of NAFLD progression.  相似文献   

7.
Genetic admixture between captive-bred and wild individuals has been demonstrated to affect many individual traits, although little is known about its potential influence on dispersal, an important trait governing the eco-evolutionary dynamics of populations. Here, we quantified and described the spatial distribution of genetic admixture in a brown trout (Salmo trutta) population from a small watershed that was stocked until 1999, and then tested whether or not individual dispersal parameters were related to admixture between wild and captive-bred fish. We genotyped 715 fish at 17 microsatellite loci sampled from both the mainstream and all populated tributaries, as well as 48 fish from the hatchery used to stock the study area. First, we used Bayesian clustering to infer local genetic structure and to quantify genetic admixture. We inferred first generation migrants to identify dispersal events and test which features (genetic admixture, sex and body length) affected dispersal parameters (i.e. probability to disperse, distance of dispersal and direction of the dispersal event). We identified two genetic clusters in the river basin, corresponding to wild fish on the one hand and to fish derived from the captive strain on the other hand, allowing us to define an individual gradient of admixture. Individuals with a strong assignment to the captive strain occurred almost exclusively in some tributaries, and were more likely to disperse towards a tributary than towards a site of the mainstream. Furthermore, dispersal probability increased as the probability of assignment to the captive strain increased, and individuals with an intermediate level of admixture exhibited the lowest dispersal distances. These findings show that various dispersal parameters may be biased by admixture with captive-bred genotypes, and that management policies should take into account the differential spread of captive-bred individuals in wild populations.  相似文献   

8.
As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions.  相似文献   

9.
10.
Stressful conditions experienced by individuals during their early development have long-term consequences on various life-history traits such as survival until first reproduction. Oxidative stress has been shown to affect various fitness-related traits and to influence key evolutionary trade-offs but whether an individual''s ability to resist oxidative stress in early life affects its survival has rarely been tested. In the present study, we used four years of data obtained from a free-living great tit population (Parus major; n = 1658 offspring) to test whether pre-fledging resistance to oxidative stress, measured as erythrocyte resistance to oxidative stress and oxidative damage to lipids, predicted fledging success and local recruitment. Fledging success and local recruitment, both major correlates of survival, were primarily influenced by offspring body mass prior to fledging. We found that pre-fledging erythrocyte resistance to oxidative stress predicted fledging success, suggesting that individual resistance to oxidative stress is related to short-term survival. However, local recruitment was not influenced by pre-fledging erythrocyte resistance to oxidative stress or oxidative damage. Our results suggest that an individual ability to resist oxidative stress at the offspring stage predicts short-term survival but does not influence survival later in life.  相似文献   

11.
Captive breeding is a high profile management tool used for conserving threatened species. However, the inevitable consequence of generations in captivity is broad scale and often-rapid phenotypic divergence between captive and wild individuals, through environmental differences and genetic processes. Although poorly understood, mate choice preference is one of the changes that may occur in captivity that could have important implications for the reintroduction success of captive-bred animals. We bred wild-caught house mice for three generations to examine mating patterns and reproductive outcomes when these animals were simultaneously released into multiple outdoor enclosures with wild conspecifics. At release, there were significant differences in phenotypic (e.g. body mass) and genetic measures (e.g. Gst and F) between captive-bred and wild adult mice. Furthermore, 83% of offspring produced post-release were of same source parentage, inferring pronounced assortative mating. Our findings suggest that captive breeding may affect mating preferences, with potentially adverse implications for the success of threatened species reintroduction programmes.  相似文献   

12.
While oxidative damage owing to reactive oxygen species (ROS) often increases with advancing age and is associated with many age-related diseases, its causative role in ageing is controversial. In particular, studies that have attempted to modulate ROS-induced damage, either upwards or downwards, using antioxidant or genetic approaches, generally do not show a predictable effect on lifespan. Here, we investigated whether dietary supplementation with either vitamin E (α-tocopherol) or vitamin C (ascorbic acid) affected oxidative damage and lifespan in short-tailed field voles, Microtus agrestis. We predicted that antioxidant supplementation would reduce ROS-induced oxidative damage and increase lifespan relative to unsupplemented controls. Antioxidant supplementation for nine months reduced hepatic lipid peroxidation, but DNA oxidative damage to hepatocytes and lymphocytes was unaffected. Surprisingly, antioxidant supplementation significantly shortened lifespan in voles maintained under both cold (7 ± 2°C) and warm (22 ± 2°C) conditions. These data further question the predictions of free-radical theory of ageing and critically, given our previous research in mice, indicate that similar levels of antioxidants can induce widely different interspecific effects on lifespan.  相似文献   

13.
Maternal intake of flavonoids, known for their antioxidant properties, may affect the offspring's susceptibility to developing chronic diseases at adult age, especially those related to oxidative stress, via developmental programming. Therefore, we supplemented female mice with the flavonoids genistein and quercetin during gestation, to study their effect on the antioxidant capacity of lung and liver of adult offspring. Maternal intake of quercetin increased the expression of Nrf2 and Sod2 in fetal liver at gestational day 14.5. At adult age, in utero exposure to both flavonoids resulted in the increased expression of several enzymatic antioxidant genes, which was more pronounced in the liver than in the adult lung. Moreover, prenatal genistein exposure induced the nonenzymatic antioxidant capacity in the adult lung, partly by increasing glutathione levels. Prenatal exposure to both flavonoids resulted in significantly lower levels of oxidative stress-induced DNA damage in liver only. Our observations lead to the hypothesis that a preemptive trigger of the antioxidant defense system in utero had a persistent effect on antioxidant capacity and as a result decreased oxidative stress-induced DNA damage in the liver.  相似文献   

14.
Marek’s disease is a lymphoproliferative neoplastic disease of the chicken, which poses a serious threat to poultry health. Marek’s disease virus (MDV)-induced T-cell lymphoma is also an excellent biomedical model for neoplasia research. Recently, miRNAs have been demonstrated to play crucial roles in mediating neoplastic transformation. To investigate host miRNA expression profiles in the tumor transformation phase of MDV infection, we performed deep sequencing in two MDV-infected samples (tumorous spleen and MD lymphoma from liver), and two non-infected controls (non-infected spleen and lymphocytes). In total, 187 and 16 known miRNAs were identified in chicken and MDV, respectively, and 17 novel chicken miRNAs were further confirmed by qPCR. We identified 28 down-regulated miRNAs and 11 up-regulated miRNAs in MDV-infected samples by bioinformatic analysis. Of nine further tested by qPCR, seven were verified. The gga-miR-181a, gga-miR-26a, gga-miR-221, gga-miR-222, gga-miR-199*, and gga-miR-140* were down-regulated, and gga-miR-146c was up-regulated in MDV-infected tumorous spleens and MD lymphomas. In addition, 189 putative target genes for seven differentially expressed miRNAs were predicted. The luciferase reporter gene assay showed interactions of gga-miR-181a with MYBL1, gga-miR-181a with IGF2BP3, and gga-miR-26a with EIF3A. Differential expression of miRNAs and the predicted targets strongly suggest that they contribute to MDV-induced lymphomagenesis.  相似文献   

15.
Oxidative stress results from a mismatch between production of reactive oxygen species (ROS) and the organism's capacity to mitigate their damaging effects by building up sufficient antioxidant protection and/or repair mechanisms. Because ROS production is a universal consequence of cellular metabolism and immune responses, evolutionary animal ecologists have become increasingly interested in involvement of oxidative stress as a proximate mechanism responsible for the emergence of trade-offs related to the evolution of life-history and signal traits. Among the most practical problems pertinent to ecological research on oxidative stress is finding a combination of biomarkers of oxidative status that can be applied to typical wild animal models such as small birds, mammals, and reptiles. This study describes covariation and individual consistency of eight parameters of oxidative status in a small passerine bird, wild-caught captive greenfinch (Carduelis chloris). We measured two markers of plasma antioxidant potential--total antioxidant capacity (TAC) and oxygen radical absorbance (OXY)--and concentrations of one lipophilic (carotenoids) and two hydrophilic (uric acid and ascorbate) antioxidants in plasma. We also measured total glutathione (GSH) concentration and superoxide dismutase (SOD) activity in erythrocytes. Oxidative damage was assessed on the basis of plasma malondialdehyde (MDA) levels, measured by high-performance liquid chromatography. Plasma carotenoids, TAC, and erythrocyte GSH showed significant individual consistency over an 8-d period, indicating that those variables reflected more persistent differences between individuals than plasma OXY, MDA, and uric acid. We did not detect any strong or moderate correlations between the studied parameters, which suggests that all of these biomarkers contain potentially unique information. Injection of a synthetic mimetic of SOD and catalase--EUK-134--did not affect any of the parameters of oxidative status. Capability of phagocytes to produce oxidative burst was not associated with MDA, indicating that under our experimental conditions, ROS production by phagocytes was not a strong determinant of oxidative damage. Altogether these findings suggest that attempts to characterize oxidative balance should use a wide range of biomarkers, and further studies of oxidative status in wild animals may benefit from the experimental induction of oxidative stress.  相似文献   

16.
As there is strong evidence for inflammation and oxidative stress in depression, the aim of this study was to elucidate the relationship between oxidative imbalance and cellular immune response and to ask whether these processes are linked with iron metabolism in depressed patients. Blood was collected from patients diagnosed with recurrent depressive disorder (n=15) and from healthy controls (n=19). Whole-blood reduced glutathione (GSH), erythrocyte superoxide dismutase (SOD-1), glutathione peroxidase (GPx-1), glutathione reductase, malondialdehyde (MDA), and methemoglobin (MetHb) and plasma H2O2 were assayed spectrophotometrically. The serum heme oxygenase 1 (HO-1), cytokine, neopterin, and iron statuses were measured by ELISA. DNA damage was analyzed by comet assay. Serum concentrations of ferritin and soluble transferrin receptor were assayed by ELISA. MetHb saturation was analyzed spectrophotometrically in red blood cell hemolysate. The erythron variables were measured using a hematological analyzer. We observed a significant decrease in GPx-1 and SOD-1 activities and decreased levels of HO-1 and GSH in depressed patients compared to controls. Conversely, compared with controls, we found increased concentrations of MDA and H2O2 and more DNA damage in depressed patients. Furthermore, the levels of the proinflammatory cytokine interleukin-6 and of neopterin were increased in depressed patients along with decreased hemoglobin and hematocrit. A strong association between antioxidant defense, cytokine levels, and iron homeostasis was also revealed. These findings show that depression is associated with increased oxidative stress, inflammation, and restrictions on the available iron supply for red blood cell production. Furthermore, decreased antioxidant defense correlates with an increased cellular inflammatory response, whereas both concur with erythron and iron status, the latter explained by significant canonical correlations with the set of free radical scavenging enzymes and proinflammatory enzymes. The strong links between immune function, oxidative stress, and iron homeostasis suggest the presence of a self-sustaining multipathway mechanism that may progressively worsen, i.e., throughout accumulation of oxidative damage, producing the functional and structural consequences associated with depression. Hence, identifying viable therapeutic strategies to tackle oxidative stress and accompanying physiological disturbances, including inflammation and anemia, of chronic disease provides more opportunities for the treatment and, ultimately, prevention of depression.  相似文献   

17.
Nonalcoholic fatty liver disease (NAFLD) is the most frequent histological finding in individuals with abnormal liver-function tests in the Western countries. In previous studies, we have shown that oxidative phosphorylation (OXPHOS) is decreased in individuals with NAFLD, but the cause of this mitochondrial dysfunction remains uncertain. The aims of this study were to determine whether feeding mice a high-fat diet (HFD) induces any change in the activity of OXPHOS, and to investigate the mechanisms involved in the pathogenesis of this defect. To that end, 30 mice were distributed between five groups: control mice fed a standard diet, and mice on a HFD and treated with saline solution, melatonin (an antioxidant), MnTBAP (a superoxide dismutase analog) or uric acid (a scavenger of peroxynitrite) for 28 weeks intraperitoneously. In the liver of these mice, we studied histology, activity and assembly of OXPHOS complexes, levels of subunits of these complexes, gene expression of these subunits, oxidative and nitrosative stress, and oxidative DNA damage. In HFD-fed mice, we found nonalcoholic steatohepatitis, increased gene expression of TNFα, IFNγ, MCP-1, caspase-3, TGFβ1 and collagen α1(I), and increased levels of 3-tyrosine nitrated proteins. The activity and assembly of all OXPHOS complexes was decreased to about 50–60%. The amount of all studied OXPHOS subunits was markedly decreased, particularly the mitochondrial-DNA-encoded subunits. Gene expression of mitochondrial-DNA-encoded subunits was decreased to about 60% of control. There was oxidative damage to mitochondrial DNA but not to genomic DNA. Treatment of HFD-fed mice with melatonin, MnTBAP or uric acid prevented all changes observed in untreated HFD-fed mice. We conclude that a HFD decreased OXPHOS enzymatic activity owing to a decreased amount of fully assembled complexes caused by a reduced synthesis of their subunits. Antioxidants and antiperoxynitrites prevented all of these changes, suggesting that nitro-oxidative stress played a key role in the pathogenesis of these alterations. Treatment with these agents might prevent the development of NAFLD in humans.KEY WORDS: Mitochondrial respiratory chain, Nonalcoholic steatohepatitis, NADPH oxidase, Oxidative phosphorylation, Proteomic, Nitro-oxidative stress  相似文献   

18.
Vector-borne diseases (VBD) are particularly susceptible to climate change because most of the diseases’ vectors are ectotherms, which themselves are susceptible to thermal changes. The Chagas disease is one neglected tropical disease caused by the protozoan parasite, Trypanosoma cruzi. One of the main vectors of the Chagas disease in South America is Triatoma infestans, a species traditionally considered to be restricted to domestic or peridomestic habitats, but sylvatic foci have also been described along its distribution. The infestation of wild individuals, together with the projections of environmental changes due to global warming, urge the need to understand the relationship between temperature and the vector’s performance. Here, we evaluated the impact of temperature variability on the thermal response of T. infestans. We acclimated individuals to six thermal treatments for five weeks to then estimate their thermal performance curves (TPCs) by measuring the walking speed of the individuals. We found that the TPCs varied with thermal acclimation and body mass. Individuals acclimated to a low and variable ambient temperature (18°C ± 5°C) exhibited lower performances than those individuals acclimated to an optimal temperature (27°C ± 0°C); while those individuals acclimated to a low but constant temperature (18°C ± 0°C) did not differ in their maximal performance from those at an optimal temperature. Additionally, thermal variability (i.e., ± 5°C) at a high temperature (30°C) increased performance. These results evidenced the plastic response of T. infestans to thermal acclimation. This plastic response and the non-linear effect of thermal variability on the performance of T. infestans posit challenges when predicting changes in the vector’s distribution range under climate change.  相似文献   

19.

Background

Normal and pathological processes entail the production of oxidative substances that can damage biological molecules and harm physiological functions. Organisms have evolved complex mechanisms of antioxidant defense, and any imbalance between oxidative challenge and antioxidant protection can depress fitness components and accelerate senescence. While the role of oxidative stress in pathogenesis and aging has been studied intensively in humans and model animal species under laboratory conditions, there is a dearth of knowledge on its role in shaping life-histories of animals under natural selection regimes. Yet, given the pervasive nature and likely fitness consequences of oxidative damage, it can be expected that the need to secure efficient antioxidant protection is powerful in molding the evolutionary ecology of animals. Here, we test whether overall antioxidant defense varies with age and predicts long-term survival, using a wild population of a migratory passerine bird, the barn swallow (Hirundo rustica), as a model.

Methodology/Principal Findings

Plasma antioxidant capacity (AOC) of breeding individuals was measured using standard protocols and annual survival was monitored over five years (2006–2010) on a large sample of selection episodes. AOC did not covary with age in longitudinal analyses after discounting the effect of selection. AOC positively predicted annual survival independently of sex. Individuals were highly consistent in their relative levels of AOC, implying the existence of additive genetic variance and/or environmental (including early maternal) components consistently acting through their lives.

Conclusions

Using longitudinal data we showed that high levels of antioxidant protection positively predict long-term survival in a wild animal population. Present results are therefore novel in disclosing a role for antioxidant protection in determining survival under natural conditions, strongly demanding for more longitudinal eco-physiological studies of life-histories in relation to oxidative stress in wild populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号