首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear pore complex (NPC) is both the major conduit for nucleocytoplasmic trafficking and a platform for organizing macromolecules at the nuclear envelope. We report that yeast Esc1, a non-NPC nuclear envelope protein, is required both for proper assembly of the nuclear basket, a structure extending into the nucleus from the NPC, and for normal NPC localization of the Ulp1 SUMO protease. In esc1Delta cells, Ulp1 and nuclear basket components Nup60 and Mlp1 no longer distribute broadly around the nuclear periphery, but co-localize in a small number of dense-staining perinuclear foci. Loss of Esc1 (or Nup60) alters SUMO conjugate accumulation and enhances ulp1 mutant defects. Similar to previous findings with Mlp1, both Esc1 and Ulp1 help retain unspliced pre-mRNAs in the nucleus. Therefore, these proteins are essential for proper nuclear basket function, which includes mRNA surveillance and regulation of SUMO protein dynamics. The results raise the possibility that NPC-localized protein desumoylation may be a key regulatory event preventing inappropriate pre-mRNA export.  相似文献   

2.
SUMO is a small ubiquitin-like protein that becomes covalently conjugated to a variety of target proteins, the large majority of which are found in the nucleus. Ulp1 is a member of a family of proteases that control SUMO function positively, by catalyzing the proteolytic processing of SUMO to its mature form, and negatively, by catalyzing SUMO deconjugation. In Drosophila S2 cells, depletion of Ulp1 by RNA interference results in a dramatic change in the overall spectrum of SUMO conjugates, indicating that SUMO deconjugation is substrate-specific and plays a critical role in determining the steady state targets of SUMO conjugation. Ulp1 normally serves to prevent the accumulation of SUMO-conjugated forms of a number of proteins, including the aminoacyl-tRNA synthetase EPRS. In the presence of Ulp1, most SUMO conjugates reside in the nucleus. However, in its absence, SUMO-conjugated EPRS accumulates in the cytoplasm, contributing to an overall shift of SUMO from the nucleus to the cytoplasm. The ability of Ulp1 to restrict SUMO conjugates to the nucleus is independent of its role as a SUMO-processing enzyme because Ulp1-dependent nuclear localization of SUMO is even observed when SUMO is expressed in a preprocessed form. Studies of a Ulp1-GFP fusion protein suggest that Ulp1 localizes to the nucleoplasmic face of the nuclear pore complex. We hypothesize that, as a component of the nuclear pore complex, Ulp1 may prevent proteins from leaving the nucleus with SUMO still attached.  相似文献   

3.
Protein modification by the ubiquitin-like SUMO protein contributes to many cellular regulatory mechanisms. In Saccharomyces cerevisiae, both sumoylating and desumoylating activities are essential for viability. Of its two known desumoylating enzymes, Ubl-specific protease (Ulp)1 and Ulp2/Smt4, Ulp1 is specifically required for cell cycle progression. A approximately 200-residue segment, the Ulp domain (UD), is conserved among Ulps and includes a core cysteine protease domain that is even more widespread. Here we demonstrate that the Ulp1 UD by itself can support wild-type growth rates and in vitro can cleave SUMO from substrates. However, in cells expressing only the UD of Ulp1, many SUMO conjugates accumulate to high levels, indicating that the nonessential Ulp1 NH2-terminal domain is important for activity against a substantial fraction of sumoylated targets. The NH2-terminal domain also includes sequences necessary and sufficient to concentrate Ulp1 at nuclear envelope sites. Remarkably, NH2-terminally deleted Ulp1 variants are able, unlike full-length Ulp1, to suppress defects of cells lacking the divergent Ulp2 isopeptidase. Thus, the NH2-terminal regulatory domain of Ulp1 restricts Ulp1 activity toward certain sumoylated proteins while enabling the cleavage of others. These data define key functional elements of Ulp1 and strongly suggest that subcellular localization is a physiologically significant constraint on SUMO isopeptidase specificity.  相似文献   

4.
SUMO-targeted ubiquitin ligases in genome stability   总被引:5,自引:0,他引:5  
We identify the SUMO-Targeted Ubiquitin Ligase (STUbL) family of proteins and propose that STUbLs selectively ubiquitinate sumoylated proteins and proteins that contain SUMO-like domains (SLDs). STUbL recruitment to sumoylated/SLD proteins is mediated by tandem SUMO interaction motifs (SIMs) within the STUbLs N-terminus. STUbL-mediated ubiquitination maintains sumoylation pathway homeostasis by promoting target protein desumoylation and/or degradation. Thus, STUbLs establish a novel mode of communication between the sumoylation and ubiquitination pathways. STUbLs are evolutionarily conserved and include: Schizosaccharomyces pombe Slx8-Rfp (founding member), Homo sapiens RNF4, Dictyostelium discoideum MIP1 and Saccharomyces cerevisiae Slx5-Slx8. Cells lacking Slx8-Rfp accumulate sumoylated proteins, display genomic instability, and are hypersensitive to genotoxic stress. These phenotypes are suppressed by deletion of the major SUMO ligase Pli1, demonstrating the specificity of STUbLs as regulators of sumoylated proteins. Notably, human RNF4 expression restores SUMO pathway homeostasis in fission yeast lacking Slx8-Rfp, underscoring the evolutionary functional conservation of STUbLs. The DNA repair factor Rad60 and its human homolog NIP45, which contain SLDs, are candidate STUbL targets. Consistently, Rad60 and Slx8-Rfp mutants have similar DNA repair defects.  相似文献   

5.
Yeast SUMO (Smt3) and its mammalian ortholog SUMO-1 are ubiquitin-like proteins that can reversibly be conjugated to other proteins. Among the substrates for SUMO modification in vertebrates are RanGAP1 and RanBP2/Nup358, two proteins previously implicated in nucleocytoplasmic transport. Sumoylated RanGAP1 binds to the nuclear pore complex via RanBP2/Nup358, a giant nucleoporin, which was recently reported to act as a SUMO E3 ligase on some nuclear substrates. However, no direct evidence for a role of the SUMO system in nuclear transport has been obtained so far. By the use of conditional yeast mutants, we examined nuclear protein import in vivo. We show here that cNLS-dependent protein import is impaired in mutants with defective Ulp1 and Uba2, two enzymes involved in the SUMO conjugation reaction. In contrast, other transport pathways such as rgNLS-mediated protein import and mRNA export are not affected. Furthermore, we find that the yeast importin-alpha subunit Srp1 accumulates in the nucleus of ulp1 and uba2 strains but not the importin-beta subunit Kap95, indicating that a lack of Srp1 export might impair cNLS import. In summary, our results provide evidence that SUMO modification in yeast, as has been suspected for vertebrates, plays an important role in nucleocytoplasmic trafficking.  相似文献   

6.
SUMO proteases possess two enzymatic activities to hydrolyze the C-terminal region of SUMOs (hydrolase activity) and to remove SUMO from SUMO-conjugated substrates (isopeptidase activity). SUMO proteases bind to SUMOs noncovalently, but the physiological roles of the binding in the functions of SUMO proteases are not well understood. In this study we found that SUMO proteases (Axam, SENP1, and yeast Ulp1) show different preferences for noncovalent binding to various SUMOs (SUMO-1, -2, -3, and yeast Smt3) and that the hydrolase and isopeptidase activities of SUMO proteases are dependent on their binding to SUMOs through salt bridge. Expression of Smt3 suppressed the phenotype of yeast mutant lacking smt3, which exhibits growth arrest, and the binding of Ulp1 to Smt3 was essential for this rescue activity. Although expression of an Smt3 mutant (smt3R64E(GG)), which conjugates to substrate but loses the ability to bind to Ulp1, rescued the phenotype of yeast lacking smt3 partially, the mutant cells showed an increment in the doubling time and a delay of desumoylation of Smt3-conjugated Cdc3. These results indicate that the noncovalent binding of SUMO protease to SUMO through salt bridge is essential for the enzymatic activities and that the balance between sumoylation and desumoylation is important for cell growth control.  相似文献   

7.
8.
Sumoylation represents a conserved mechanism of post-translational protein modification. We report that Pli1p, the unique fission yeast member of the SP-RING family, is a SUMO E3 ligase in vivo and in vitro. pli1Delta cells display no obvious mitotic growth defects, but are sensitive to the microtubule-destabilizing drug TBZ and exhibit enhanced minichromosome loss. The weakened centromeric function of pli1Delta cells may be related to the defective heterochromatin structure at the central core, as shown by the reduced silencing of an ura4 variegation reporter gene inserted at cnt and imr. Interestingly, pli1Delta cells also exhibit enhanced loss of the ura4 reporter at these loci, likely by gene conversion using homologous sequences as information donors. Moreover, pli1Delta cells exhibit consistent telomere length increase, possibly achieved by a similar process. Point mutations within the RING finger of Pli1p totally or partially reproduce the pli1 deletion phenotypes, thus correlating with their sumoylation activity. Altogether, these results strongly suggest that Pli1p, and by extension sumoylation, is involved in mechanisms that regulate recombination in particular heterochromatic repeated sequences.  相似文献   

9.
SUMO conjugation and deconjugation   总被引:15,自引:0,他引:15  
Ligation of the ubiquitin-like protein SUMO (Smt3p) to other proteins is essential for viability of the yeast Saccharomyces cerevisiae. Like ubiquitin (Ub), SUMO undergoes ATP-dependent activation by a specific activating enzyme. SUMO-activating enzyme is a heterodimer composed of Uba2p and Aos1p, polypeptides with sequence similarities, respectively, to the C- and N-terminal parts of Ub-activating enzyme. To study the function of SUMO conjugation, we isolated uba2 mutants that were temperature-sensitive for growth. In these mutants conjugation of SUMO to other proteins was drastically reduced, even at the temperature permissive for growth. In a screen for spontaneous suppressors of the temperature-sensitive growth phenotype of the mutant uba2-ts9, we isolated a strain with a null mutation (sut9) in a gene of hitherto unknown function (SUT9/YIL031W/SMT4). This gene encodes a protein with similarities to Ulp1p, a dual-function protease that processes the SUMO precursor and deconjugates SUMO from its substrates. The novel protein was therefore termed Ulp2p. Inactivation of ULP2 in a strain expressing wild-type SUMO-activating enzyme resulted in slow and temperature-sensitive growth, and accumulation of SUMO conjugates. Thus, mutations in SUMO-activating enzyme and mutations in Ulp2p suppress each other, indicating that SUMO conjugation and deconjugation must be in balance for cells to grow normally. Other phenotypes of ulp2 mutants include a defect in cell cycle progression, hypersensitivity to DNA damage, and chromosome mis-segregation. Ulp2p is predominantly located within the nucleus, whereas Ulp1p colocalizes with nuclear pore complex proteins, indicating that the apparently distinct functions of the two SUMO deconjugating enzymes are spatially separated. Received: 1 March 2000 / Accepted: 22 March 2000  相似文献   

10.
Modification in reverse: the SUMO proteases   总被引:8,自引:0,他引:8  
SUMOs (small ubiquitin-like modifiers) are ubiquitin-related proteins that become covalently conjugated to cellular target proteins that are involved in a variety of processes. Frequently, this modification has a key role in regulating the activities of those targets and, thus, their cellular functions. SUMO conjugation is a highly dynamic process that can be rapidly reversed by the action of members of the Ubl (ubiquitin-like protein)-specific protease (Ulp) family. The same family of enzymes is also responsible for maturation of newly synthesized SUMOs prior to their initial conjugation. Recent advances in structural, biochemical and cell biological analysis of Ulp/SENPs reveal their high degree of specificity towards SUMO paralogs, in addition to discrimination between processing, deconjugation and chain-editing reactions. The dissimilar sub-nuclear localization patterns of Ulp/SENPs and phenotypes of Ulp/SENP mutants further indicate that different Ulp/SENPs have distinct and non-redundant roles.  相似文献   

11.

Background

In the yeast Saccharomyces cerevisiae, the essential small ubiquitin-like modifier (SUMO) protease Ulp1 is responsible for both removing SUMO/Smt3 from specific target proteins and for processing precursor SUMO into its conjugation-competent form. Ulp1 localizes predominantly to nuclear pore complexes but has also been shown to deconjugate sumoylated septins at the bud-neck of dividing cells. How Ulp1 is directed to bud-neck localized septins and other cytoplasmic deconjugation targets is not well understood.

Results

Using a structure/function approach, we set out to elucidate features of Ulp1 that are required for substrate targeting. To aid our studies, we took advantage of a catalytically inactive mutant of Ulp1 that is greatly enriched at the septin ring of dividing yeast cells. We found that the localization of Ulp1 to the septins requires both SUMO and specific structural features of Ulp1's catalytic domain. Our analysis identified a 218-amino acid, substrate-trapping mutant of the catalytic domain of Ulp1, Ulp1(3)(C580S), that is necessary and sufficient for septin localization. We also used the targeting and SUMO-binding properties of Ulp1(3)(C580S) to purify Smt3-modified proteins from cell extracts.

Conclusions

Our study provides novel insights into how the Ulp1 SUMO protease is actively targeted to its substrates in vivo and in vitro. Furthermore, we found that a substrate-trapping Ulp1(3)(C580S) interacts robustly with human SUMO1, SUMO2 and SUMO2 chains, making it a potentially useful tool for the analysis and purification of SUMO-modified proteins.  相似文献   

12.
SUMO (small ubiquitin-related modifier), a 12 kDa protein with distant similarity to ubiquitin, covalently binds to many proteins in eukaryotic cells. In contrast to ubiquitination, which mainly regulates proteasome-dependent degradation and protein sorting, sumoylation is known to regulate assembly and disassembly of protein complexes, protein localization and stability, and so on. SUMO is primarily localized to the nucleus, and many SUMO substrates are nuclear proteins involved in DNA transaction. However, certain roles of SUMO conjugates have been shown outside the nucleus. Particularly in budding yeast, SUMO is also localized to the bud-neck in a cell cycle-dependent manner. The first and prominent SUMO substrates are septins, evolutionally conserved proteins required for cytokinesis in yeast. Recent analysis of human septin structure would greatly facilitate the study of the functions of these SUMO conjugates. SUMO modification of septins is regulated by cell cycle-dependent nuclear transport of PIAS-type Siz1 (SUMO E3) and Ulp1 desumoylation enzyme in yeast. Domains outside the SUMO-ligase core (SP-RING) of Siz1 ensure its regulations. Furthermore, newly discovered ubiquitin ligases that specifically recognize poly-SUMO conjugates could lead to degradation of SUMO conjugates. Thus, protein modifications seem to be regulated in an unexpectedly complex manner. In this review, we focus on various regulations in yeast septin sumoylation and discuss its possible functions.  相似文献   

13.
The RanGTPase activating protein RanGAP1 has essential functions in both nucleocytoplasmic transport and mitosis. In interphase, a significant fraction of vertebrate SUMO1-modified RanGAP1 forms a stable complex with the nucleoporin RanBP2/Nup358 at nuclear pore complexes. RanBP2 not only acts in the RanGTPase cycle but also is a SUMO1 E3 ligase. Here, we show that RanGAP1 is phosphorylated on residues T409, S428, and S442. Phosphorylation occurs before nuclear envelope breakdown and is maintained throughout mitosis. Nocodazole arrest leads to quantitative phosphorylation. The M-phase kinase cyclin B/Cdk1 phosphorylates RanGAP1 efficiently in vitro, and T409 phosphorylation correlates with nuclear accumulation of cyclin B1 in vivo. We find that phosphorylated RanGAP1 remains associated with RanBP2/Nup358 and the SUMO E2-conjugating enzyme Ubc9 in mitosis, hence mitotic phosphorylation may have functional consequences for the RanGTPase cycle and/or for RanBP2-dependent sumoylation.  相似文献   

14.
15.
RanBP2/Nup358 is an essential protein with roles in nuclear transport and mitosis, and is one of the few known SUMO E3 ligases. However, why RanBP2 functions in vivo has been unclear: throughout the cell cycle it stably interacts with RanGAP1*SUMO1 and Ubc9, whose binding sites overlap with the E3 ligase region. Here we show that cellular RanBP2 is quantitatively associated with RanGAP1, indicating that complexed rather than free RanBP2 is the relevant E3 ligase. Biochemical reconstitution of the RanBP2/RanGAP1*SUMO1/Ubc9 complex enabled us to characterize its activity on the endogenous substrate Borealin. We find that the complex is a composite E3 ligase rather than an E2-E3 complex, and demonstrate that complex formation induces activation of a catalytic site that shows no activity in free RanBP2. Our findings provide insights into the mechanism of an important E3 ligase, and extend the concept of multisubunit E3 ligases from ubiquitin to the SUMO field.  相似文献   

16.
SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively.  相似文献   

17.
Small ubiquitin-related modifiers (SUMOs) are proteins that are posttranslationally conjugated to other cellular proteins, particularly those that localize and function in the nucleus. Enzymes regulating SUMO modification localize in part to nuclear pore complexes (NPCs), indicating that modification of some proteins may occur as they are translocated between the nucleus and the cytoplasm. Substrates that are regulated by SUMO modification at NPCs, however, have not been previously identified. Among the most abundant cargos transported through NPCs are the heterogeneous nuclear ribonucleoproteins (hnRNPs). HnRNPs are involved in various aspects of mRNA biogenesis, including regulation of pre-mRNA splicing and nuclear export. Here, we demonstrate that two subsets of hnRNPs, the hnRNP C and M proteins, are substrates for SUMO modification. We demonstrate that the hnRNP C proteins are modified by SUMO at a single lysine residue, K237, and that SUMO modification at this site decreases their binding to nucleic acids. We also show that Nup358, a SUMO E3 ligase associated with the cytoplasmic fibrils of NPCs, enhances the SUMO modification of the hnRNP C and M proteins. Based on our findings, we propose that SUMO modification of the hnRNP C and M proteins may occur at NPCs and facilitate the nucleocytoplasmic transport of mRNAs.  相似文献   

18.
The small ubiquitin-related modifiers (SUMOs) are evolutionarily conserved polypeptides that are covalently conjugated to protein targets to modulate their subcellular localization, half-life, or activity. Steady-state SUMO conjugation levels increase in response to many different types of environmental stresses, but how the SUMO system is regulated in response to these insults is not well understood. Here, we characterize a novel mode of SUMO system control: in response to elevated alcohol levels, the Saccharomyces cerevisiae SUMO protease Ulp1 is disengaged from its usual location at the nuclear pore complex (NPC) and sequestered in the nucleolus. We further show that the Ulp1 region previously demonstrated to interact with the karyopherins Kap95 and Kap60 (amino acids 150 to 340) is necessary and sufficient for nucleolar targeting and that enforced sequestration of Ulp1 in the nucleolus significantly increases steady-state SUMO conjugate levels, even in the absence of alcohol. We have thus characterized a novel mechanism of SUMO system control in which the balance between SUMO-conjugating and -deconjugating activities at the NPC is altered in response to stress via relocalization of a SUMO-deconjugating enzyme.The small ubiquitin-related modifiers (SUMOs) are a family of evolutionarily conserved polypeptides that are conjugated to protein targets via the concerted action of SUMO-specific E1 (activation), E2 (conjugation), and E3 (ligase) enzymes to effect changes in subcellular localization, half-life, or target activity. A family of SUMO-specific proteases act to remove the modifier from conjugates (8, 20). The SUMO system has been implicated in a variety of critical cellular functions, such as DNA repair and replication, RNA metabolism, and stress responses (8, 16, 20). Importantly, the SUMO system is highly dynamic and the SUMO pathway enzymes appear to work together to precisely control SUMO conjugate levels in the cell (8, 16, 20). However, how the SUMO system itself is regulated is poorly understood.Localization of the SUMO pathway enzymes may play an important role in SUMO system function (21). For example, the budding yeast SUMO protease Ulp1 is tethered to the nuclear face of the nuclear pore complex (NPC) via an unconventional interaction with the karyopherin Kap121 and the heterodimeric Kap95/Kap60 complex (12, 13, 23). However, this SUMO protease is not maintained exclusively at the NPC but appears to be mobile, effecting desumoylation at diverse subcellular locations: e.g., during mitosis, Saccharomyces cerevisiae Ulp1 is recruited to the septin ring to desumoylate septins (15), Schizosaccharomyces pombe Ulp1 localization is regulated throughout the cell cycle (31), and a mammalian Ulp1 homolog, SENP2, is shuttled between the nucleus and the cytoplasm (7). Consistent with these observations, SUMO conjugate levels are significantly altered in yeast strains expressing mislocalized Ulp1 (13, 37).Dramatic changes in SUMO conjugate populations have been noted in response to many different types of stresses in yeasts, mammals, and plants (9, 17, 27, 32, 38). For example, in S. cerevisiae, significantly increased steady-state SUMO conjugate levels are observed in response to elevated concentrations of ethanol (38). To better understand how the SUMO system is regulated in response to stress, we utilized alcohol as a model of a physiologically relevant stressor in yeast. Here, we demonstrate that alcohol stress results in a rapid, reversible nucleolar sequestration of Ulp1 and that enforced localization of Ulp1 in the nucleolus leads to a dramatic increase in steady-state SUMO conjugate levels. This is the first demonstration of regulated modulation of the intracellular localization of a SUMO enzyme in response to stress and thus represents a novel mechanism for SUMO system control.  相似文献   

19.
20.
SUMOs (small ubiquitin-related modifiers) are eukaryotic proteins that are covalently conjugated to other proteins and thereby regulate a wide range of important cellular processes. The molecular mechanisms by which SUMO modification influences the functions of most target proteins and cellular processes, however, remain poorly defined. A major obstacle to investigating the effects of SUMO modification is the availability of a system for selectively inducing the modification or demodification of an individual protein. To address this problem, we have developed a procedure using the rapamycin heterodimerizer system. This procedure involves co-expression of rapamycin-binding domain fusion proteins of SUMO and candidate SUMO substrates in living cells. Treating cells with rapamycin induces a tight association between SUMO and a single SUMO substrate, thereby allowing specific downstream effects to be analyzed. Using RanGAP1 as a model SUMO substrate, the heterodimerizer system was used to investigate the molecular mechanism by which SUMO modification targets RanGAP1 from the cytoplasm to nuclear pore complexes (NPCs). Our results revealed a dual role for Ubc9 in targeting RanGAP1 to NPCs: In addition to conjugating SUMO-1 to RanGAP1, Ubc9 is also required to form a stable ternary complex with SUMO-1 modified RanGAP1 and Nup358. As illustrated by our studies, the rapamycin heterodimerizer system represents a novel tool for studying the molecular effects of SUMO modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号