首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Recently, selection for milk technological traits was initiated in the Italian dairy cattle industry based on direct measures of milk coagulation properties (MCP) such as rennet coagulation time (RCT) and curd firmness 30 min after rennet addition (a30) and on some traditional milk quality traits that are used as predictors, such as somatic cell score (SCS) and casein percentage (CAS). The aim of this study was to shed light on the causal relationships between traditional milk quality traits and MCP. Different structural equation models that included causal effects of SCS and CAS on RCT and a30 and of RCT on a30 were implemented in a Bayesian framework.

Results

Our results indicate a non-zero magnitude of the causal relationships between the traits studied. Causal effects of SCS and CAS on RCT and a30 were observed, which suggests that the relationship between milk coagulation ability and traditional milk quality traits depends more on phenotypic causal pathways than directly on common genetic influence. While RCT does not seem to be largely controlled by SCS and CAS, some of the variation in a30 depends on the phenotypes of these traits. However, a30 depends heavily on coagulation time. Our results also indicate that, when direct effects of SCS, CAS and RCT are considered simultaneously, most of the overall genetic variability of a30 is mediated by other traits.

Conclusions

This study suggests that selection for RCT and a30 should not be performed on correlated traits such as SCS or CAS but on direct measures because the ability of milk to coagulate is improved through the causal effect that the former play on the latter, rather than from a common source of genetic variation. Breaking the causal link (e.g. standardizing SCS or CAS before the milk is processed into cheese) would reduce the impact of the improvement due to selective breeding. Since a30 depends heavily on RCT, the relative emphasis that is put on this trait should be reconsidered and weighted for the fact that the pure measure of a30 almost double-counts RCT.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0123-7) contains supplementary material, which is available to authorized users.  相似文献   

2.
Objective of this study was to estimate genetic parameters of milk coagulation properties (MCPs) and individual laboratory cheese yield (ILCY) in a sample of 1018 Sarda breed ewes farmed in 47 flocks. Rennet coagulation time (RCT), curd-firming time (k20) and curd firmness (a30) were measured using Formagraph instrument, whereas ILCY were determined by a micromanufacturing protocol. About 10% of the milk samples did not coagulate within 30 min and 13% had zero value for k20. The average ILCY was 36%. (Co)variance components of considered traits were estimated by fitting both single- and multiple-trait animal models. Flock-test date explained from 13% to 28% of the phenotypic variance for MCPs and 26% for ILCY, respectively. The largest value of heritability was estimated for RCT (0.23±0.10), whereas it was about 0.15 for the other traits. Negative genetic correlations between RCT and a30 (−0.80±0.12), a30 and k20 (−0.91±0.09), and a30 and ILCY (−0.67±0.08) were observed. Interesting genetic correlations between MCPs and milk composition (rG>0.40) were estimated for pH, NaCl and casein. Results of the present study suggest to use only one out of three MCPs to measure milk renneting ability, due to high genetic correlations among them. Moreover, negative correlations between ILCY and MCPs suggest that great care should be taken when using these methods to estimate cheese yield from small milk samples.  相似文献   

3.
The aim of the present study was to estimate genetic parameters for calcium (Ca), phosphorus (P) and titratable acidity (TA) in bovine milk predicted by mid-IR spectroscopy (MIRS). Data consisted of 2458 Italian Holstein−Friesian cows sampled once in 220 farms. Information per sample on protein and fat percentage, pH and somatic cell count, as well as test-day milk yield, was also available. (Co)variance components were estimated using univariate and bivariate animal linear mixed models. Fixed effects considered in the analyses were herd of sampling, parity, lactation stage and a two-way interaction between parity and lactation stage; an additive genetic and residual term were included in the models as random effects. Estimates of heritability for Ca, P and TA were 0.10, 0.12 and 0.26, respectively. Positive moderate to strong phenotypic correlations (0.33 to 0.82) existed between Ca, P and TA, whereas phenotypic weak to moderate correlations (0.00 to 0.45) existed between these traits with both milk quality and yield. Moderate to strong genetic correlations (0.28 to 0.92) existed between Ca, P and TA, and between these predicted traits with both fat and protein percentage (0.35 to 0.91). The existence of heritable genetic variation for Ca, P and TA, coupled with the potential to predict these components for routine cow milk testing, imply that genetic gain in these traits is indeed possible.  相似文献   

4.
Lactose percentage (LP) in milk is currently determined in most herd-testing schemes, and globally, it is usually routinely recorded in the framework of the official milk recording procedures. However, few studies have investigated the phenotypic and genetic variability of this component. Data used in the present paper consisted of 59 811 test-day records from 4355 Holstein cows in 266 herds. Heritabilities of LP and lactose yield (LY) were estimated through single-trait repeatability animal models, whereas genetic and phenotypic correlations of LP and LY with milk composition and production traits, somatic cell score and milk freezing point were estimated using bivariate models. Fixed effects included in the analyses were herd-test-date, season of calving, parity, stage of lactation and the interaction between parity and stage of lactation. Random effects were animal additive genetic, within and across lactation permanent environment and the residual. Lactation curves of LP and LY increased from parturition to the peak of lactation and decreased thereafter, mirroring the typical curve of milk yield. Lactose percentage was greater in first- than later-parity cows. Heritabilities of LP and LY were 0.43±0.03 and 0.14±0.02, respectively, and LP and protein percentage were the most repeatable traits. Genetic correlations (ra) of LP with somatic cell score, LY and milk freezing point were −0.22±0.08, 0.28±0.08 and −0.46±0.05, respectively. Genetic relationships of LY with milk yield (ra=0.97±0.00), fat percentage (ra=−0.71±0.06), protein percentage (ra=−0.57±0.06) and protein yield (ra=0.64±0.06) were moderate to strong. Results suggest that milk LP could be considered in breeding strategies to accelerate the gain of correlated low heritable traits. Further research is needed to evaluate the feasibility of including LP in the selection index of Italian Holstein population to address country-specific needs and market demands.  相似文献   

5.
Milk urea concentration (MU) used by dairy producers for management purposes can be affected by selection for milk traits. To assess this problem, genetic parameters for MU in Polish Holstein-Friesian cattle were estimated for the first three lactations. The genetic correlation of MU with milk production traits, lactose percentage, fat to protein ratio (FPR) and somatic cell score (SCS) were computed with two 5-trait random regression test-day models, separately for each lactation. Data used for estimation (159,044 daily observations) came from 50 randomly sampled herds. (Co)variance components were estimated with the Bayesian Gibbs sampling method. The coefficient of variation for MU in all three parities was high (40–41 %). Average daily heritabilities of MU were 0.22 for the first parity and 0.21 for the second and third lactations. Average genetic correlations for different days in milk in the first three lactations between MU and other traits varied. They were small and negative for protein percentage (from ?0.24 to ?0.11) and for SCS (from ?0.14 to ?0.09). The weakest genetic correlation between MU and fat percentage, and between MU and lactose percentage were observed (from ?0.10 to 0.10). Negative average genetic correlation with the fat to protein ratio was observed only in the first lactation (?0.14). Genetic correlations with yield traits were positive and ranged from low to moderate for protein (from 0.09 to 0.33), fat (from 0.16 to 0.35) and milk yield (from 0.20 to 0.42). These results suggest that the selection on yield traits and SCS tends to increase MU slightly.  相似文献   

6.
Early lactation parameters are difficult to estimate from commercial dairy records due to the small number of records available before the peak of production. A biological model of lactation was used with weekly milk records from a single Holstein herd to estimate these early lactation parameters and the secretion rate of milk from the average cell throughout lactation. A genetic analysis of the lactation curve parameters, calculated curve characteristics and secretion rate traits was undertaken. Early lactation traits were found to have little genetic variation and effectively zero heritability. Secretion rate traits for milk, protein, lactose and water were all moderately heritable and highly genetically correlated (>0.87) but fat secretion rate had lower genetic correlations with the other secretion rates. A similar pattern of correlations was seen between total lactation yield traits for fat, protein, lactose and water. The genetic correlations between the lactation curve traits and the secretion rate traits were calculated. Total milk yield, peak yield and maximum secretion potential were all highly correlated with milk, lactose and water secretion rates but less so with fat and protein secretion rates. In particular, fat secretion rate had a moderate to low genetic correlation with these lactation curve traits. Persistency of lactation was highly correlated with fat and protein secretion rates, more persistent lactations being associated with lower rates of secretion of these milk components. Similar levels of heritability were found, where trait genetic parameters were directly equivalent to those derived from the same dataset by random regression methods. However, by using a biological model of lactation to analyse lactation traits new insights into the biology of lactation are possible and ways to select cows on a range of lactation traits may be achieved.  相似文献   

7.
This study set out to demonstrate the feasibility of merging data from different experimental resource dairy populations for joint genetic analyses. Data from four experimental herds located in three different countries (Scotland, Ireland and the Netherlands) were used for this purpose. Animals were first lactation Holstein cows that participated in ongoing or previously completed selection and feeding experiments. Data included a total of 60 058 weekly records from 1630 cows across the four herds; number of cows per herd ranged from 90 to 563. Weekly records were extracted from the individual herd databases and included seven traits: milk, fat and protein yield, milk somatic cell count, liveweight, dry matter intake and energy intake. Missing records were predicted with the use of random regression models, so that at the end there were 44 weekly records, corresponding to the typical 305-day lactation, for each cow. A total of 23 different lactation traits were derived from these records: total milk, fat and protein yield, average fat and protein percentage, average fat-to-protein ratio, total dry matter and energy intake and average dry matter intake-to-milk yield ratio in lactation weeks 1 to 44 and 1 to 15; average milk somatic cell count in lactation weeks 1 to 15 and 16 to 44; average liveweight in lactation weeks 1 to 44; and average energy balance in lactation weeks 1 to 44 and 1 to 15. Data were subsequently merged across the four herds into a single dataset, which was analysed with mixed linear models. Genetic variance and heritability estimates were greater (P < 0.05) than zero for all traits except for average milk somatic cell count in weeks 16 to 44. Proportion of total phenotypic variance due to genotype-by-environment (sire-by-herd) interaction was not different (P > 0.05) from zero. When estimable, the genetic correlation between herds ranged from 0.85 to 0.99. Results suggested that merging experimental herd data into a single dataset is both feasible and sensible, despite potential differences in management and recording of the animals in the four herds. Merging experimental data will increase power of detection in a genetic analysis and augment the potential reference population in genome-wide association studies, especially of difficult-to-record traits.  相似文献   

8.

Background

The maintenance of lactation in mammals is the result of a balance between competing signals from mammary development, prolactin signalling and involution pathways. Dairy cattle are an interesting case study to investigate the effect of polymorphisms that affect the function of genes in these pathways. In dairy cattle, lactation yields and milk composition (for example protein percentage and fat percentage) are routinely recorded, and these vary greatly between individuals. In this study, we test 8058 single nucleotide polymorphisms in or close to genes in these pathways for association with milk production traits and determine the proportion of variance explained by each pathway, using data on 16 812 dairy cattle, including Holstein-Friesian and Jersey bulls and cows.

Results

Single nucleotide polymorphisms close to genes in the mammary development, prolactin signalling and involution pathways were significantly associated with milk production traits. The involution pathway explained the largest proportion of genetic variation for production traits. The mammary development pathway also explained additional genetic variation for milk volume, fat percentage and protein percentage.

Conclusions

Genetic variants in the involution pathway explained considerably more genetic variation in milk production traits than expected by chance. Many of the associations for single nucleotide polymorphisms in genes in this pathway have not been detected in conventional genome-wide association studies. The pathway approach used here allowed us to identify some novel candidates for further studies that will be aimed at refining the location of associated genomic regions and identifying polymorphisms contributing to variation in lactation volume and milk composition.  相似文献   

9.
Real-time analysis of milk coagulation properties as performed by the AfiLab™ milk spectrometer introduces new opportunities for the dairy industry. The study evaluated the performance of the AfiLab™ in a milking parlor of a commercial farm to provide real-time analysis of milk-clotting parameters –Afi-CF for cheese manufacture and determine its repeatability in time for individual cows. The AfiLab™ in a parlor, equipped with two parallel milk lines, enables to divert the milk on-line into two bulk milk tanks (A and B). Three commercial dairy herds of 220 to 320 Israeli Holstein cows producing ∼11 500 l during 305 days were selected for the study. The Afi-CF repeatability during time was found significant (P < 0.001) for cows. The statistic model succeeded in explaining 83.5% of the variance between Afi-CF and cows, and no significant variance was found between the mean weekly repeated recordings. Days in milk and log somatic cell count (SCC) had no significant effect. Fat, protein and lactose significantly affected Afi-CF and the empirical van Slyke equation. Real-time simulations were performed for different cutoff levels of coagulation properties where the milk of high Afi-CF cutoff value was channeled to tank A and the lower into tank B. The simulations showed that milk coagulation properties of an individual cow are not uniform, as most cows contributed milk to both tanks. Proportions of the individual cow's milk in each tank depended on the selected Afi-CF cutoff. The assessment of the major causative factors of a cow producing low-quality milk for cheese production was evaluated for the group that produced the low 10% quality milk. The largest number of cows in those groups at the three farms was found to be cows with post-intramammary infection with Escherichia coli and subclinical infections with streptococci or coagulase-negative staphylococci (∼30%), although the SCC of these cows was not significantly different. Early time in lactation together with high milk yield >50 l/day, and late in lactation together with low milk yield<15 l/day and estrous (0 to 5 days) were also important influencing factors for low-quality milk. However, ∼50% of the tested variables did not explain any of the factors responsible for the cow producing milk in the low – 10% Afi-CF.  相似文献   

10.
Phenotypic variation in milk production traits has been described over the course of a lactation as well as between different parities. The objective of this study was to investigate whether variation in production is affected by different loci across lactations. A genome-wide association study (GWAS) using a 50-k SNP chip was conducted in 152 divergent German Holstein Friesian cows to test for association with milk production traits over different lactations. The first four lactations were analysed regarding milk yield, fat, protein, lactose, milk urea nitrogen yield and content as well as somatic cell score. Two approaches were used: (i) Wilmink curve parameters were used to assess the genetic effects over the course of a lactation and (ii) test-day yield deviations (YD) were used as a normative approach for a GWAS. The significant effects were largest for markers affecting curve parameters for which there was a statistical power <0.8 of detection even in this small design. While significant markers for YDs were detected in this study, the power to detect effects of a similar magnitude was only 0.11, suggesting that many loci may have been missed with this approach in the present design. Furthermore, all significant effects were specific for a single lactation, leading to the conclusion that the variance explained by a certain locus changes from lactation to lactation. We confirm the common evidence that most production traits vary in the degree of persistency after the peak as a result of genetic influence.  相似文献   

11.
Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature–humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (−0.22 to −0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality traits. Selection for higher MY, F% or P% may result in a poor response of the animals to heat stress, as a genetic antagonism was observed between the general production level and specific ability to respond to heat stress for these traits. Genetic trends confirm the adverse responses in the genetic components of heat stress over the years for milk production and quality. Consequently, the selection of Holstein cattle raised in modified environments in both tropical and sub-tropical regions should take into consideration the genetic variation in heat stress.  相似文献   

12.
The aim of the study was to infer (co)variance components for daily milk yield, fat and protein contents, and somatic cell score (SCS) in Burlina cattle (a local breed in northeast Italy). Data consisted of 13576 monthly test-day records of 666 cows (parities 1 to 8) collected in 10 herds between 1999 and 2009. Repeatability animal models were implemented using Bayesian methods. Flat priors were assumed for systematic effects of herd test date, days in milk, and parity, as well as for permanent environmental, genetic, and residual effects. On average, Burlina cows produced 17.0 kg of milk per day, with 3.66 and 3.33% of fat and protein, respectively, and 358000 cells per mL of milk. Marginal posterior medians (highest posterior density of 95%) of heritability were 0.18 (0.09–0.28), 0.28 (0.21–0.36), 0.35 (0.25–0.49), and 0.05 (0.01–0.11) for milk yield, fat content, protein content, and SCS, respectively. Marginal posterior medians of genetic correlations between the traits were low and a 95% Bayesian confidence region included zero, with the exception of the genetic correlation between fat and protein contents. Despite the low number of animals in the population, results suggest that genetic variance for production and quality traits exists in Burlina cattle.  相似文献   

13.
The aim of this study was to estimate genetic correlations between milk yield, somatic cell score (SCS), mastitis, and claw and leg disorders (CLDs) during first lactation in Holstein cows by using a threshold–linear random regression test-day model. We used daily records of milk, fat and protein yields; somatic cell count (SCC); and mastitis and CLD incidences from 46 771 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2000 and 2009. A threshold animal model for binary records (mastitis and CLDs) and linear animal model for yield traits were applied in our multiple trait analysis. For both liabilities and yield traits, additive genetic effects were used as random regression on cubic Legendre polynomials of days on milk. The highest positive genetic correlations between yields and disease incidences (0.36 for milk and mastitis, 0.56 for fat and mastitis, 0.24 for protein and mastitis, 0.32 for milk and CLD, 0.44 for fat and CLD and 0.31 for protein and CLD) were estimated at about the time of peak milk yield (36 to 65 days in milk). Selection focused on early lactation yield may therefore increase the risk of mastitis and CLDs. The positive genetic correlations of SCS with mastitis or CLD incidence imply that selection to reduce SCS in the early stages of lactation would decrease the incidence of both mastitis and CLD.  相似文献   

14.
The success in competitions may be stressful for animals and costly in terms of immune functions and longevity. Focusing on Aosta Chestnut and Aosta Black Pied cattle, selected for their fighting ability in traditional competitions, this study investigated the genetic relationships of fighting ability with udder health traits (somatic cell score and two threshold traits for somatic cells), longevity (length of productive life and number of calvings) and test-day milk, fat and protein yield. Herdbook information and phenotypic records that have been routinely collected for breeding programs in 16 years were used for the abovementioned traits. Data belonged to 9328 cows and 19 283 animals in pedigree. Single-trait animal model analyses were run using a Gibbs sampling algorithm to estimate the variance components of traits, and bivariate analyses were then performed to estimate the genetic correlations. Moderate positive genetic correlations (ra) were found for fighting ability with somatic cell score (ra=0.255), suggesting that greater fighting ability is genetically related to a detriment in udder health, in agreement with the theory. The high positive genetic correlation between fighting ability and longevity (average ra=0.669) suggests that the economic importance of fighting ability (the winning cows get an higher price at selling) had probably masked the true genetic covariances. The genetic correlation between milk yield traits and fighting ability showed large intervals, but the negative values (average ra=−0.121) agreed with previous research. This study is one of the few empirical studies on genetic correlations for the competitive success v. immune functions and longevity traits. The knowledge of the genetic correlations among productive and functional traits of interest, including fighting ability, is important in animal breeding for a sustainable genetic improvement.  相似文献   

15.
The aim of this study was estimate the relations between CRH C22G and milk production traits (milk yield, yield of protein and fat, content of protein and fat in milk). The study was carried on 169 Polish Holstein-Friesian strain Red-and-White cows kept in the south-western region of Poland. The CRH C22G (exon 2) polymorphisms were detected using PCR-RFLP method. The genotype and allele frequencies were estimated and they were as follows: CC - 0.89, CG - 0.09, GG - 0.02; C - 0.93, G - 0.07. Statistically significant (P < or = 0.05) associations between CRH C22G genotypes and milk production traits like milk yield and protein yield in the second lactation were found. Moreover, the obtained results should be verified by conducting research on a larger group of animals and various cattle breeds.  相似文献   

16.
Two polymorphisms at STAT5A gene were investigated in a sample of Agerolese cows. The aims of the present study were to estimate the allele and genotype frequencies and to investigate the relationship among genotypes and milk production traits. Milk production traits were analyzed for each animal in the first, second, third, and fourth lactation. No genetic variability was found at STAT5A/AvaI locus. At STAT5A/MslI locus, the frequencies of T and C alleles were 0.875 and 0.125, respectively. Significant differences between genotypes were found: TT cow produced a milk with a higher content of fat and protein when compared with TC.  相似文献   

17.

Background

Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models. The potential use of dominance variance in planned matings was also investigated.

Results

Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield.

Conclusions

Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain.  相似文献   

18.
Performance of dairy cattle clones and evaluation of their milk composition   总被引:2,自引:0,他引:2  
Genetic and phenotypic performance of U.S. Holstein embryo-split and nuclear-transfer clones was documented for yield and fitness traits. For cows, mean genetic superiority based on pedigree was 186 kg of milk, 9 kg of fat, and 7 kg of protein for embryo-split clones and 165, 10, and 8 kg, respectively, for nuclear-transfer clones compared with the population for the same birth year; pedigree advantage for male clones generally was slightly greater. Estimates of genetic merit that considered a clone's own performance as well as pedigree merit were slightly lower for embryo-split cows than for their full siblings for yield but not for milk composition (fat and protein percentages), mastitis resistance (somatic cell score), longevity (productive life), or cow fertility (daughter pregnancy rate); no corresponding genetic differences were found for nuclear-transfer cows or for cloned bulls regardless of clone type. For bulls, estimated genetic merit based on daughter yield was more similar for clone pairs with apparent identical genotype than for pairs from the same biotechnology but nonidentical as confirmed by blood typing. Yield deviations were lower for clones than for their full siblings. Milk composition (total solids, fat, fatty acid profile, lactose, and protein) also was compared for nuclear-transfer clones (Brown Swiss, Holstein, and Holstein-Jersey cross) with non-cloned cows and literature values; no differences were found for gross chemical composition of milk. No obvious differences were evident between cloned and non-cloned animals or for the milk that they produced.  相似文献   

19.
As part of a genome scan, ESTs derived from mammary gland tissue of a lactating cow were used as candidate genes for quantitative trait loci (QTL), affecting milk production traits. Resource families were genotyped with 247 microsatellite markers and 4 polymorphic ESTs. It was shown by linkage analysis that one of these ESTs, KIEL_E8, mapped to the centromeric region of bovine Chromosome (Chr) 14. Regression analysis revealed the presence of a QTL, with significant effect on milk production, in this chromosome region, and analysis of variance showed no significant interaction of marker genotype and family. The estimated significant differences between homozygous marker genotypes were 140 kg milk, −5.02 kg fat yield, and 2.58 kg protein yield for the first 100 days of lactation. Thus, there was strong evidence for a complete or nearly complete linkage disequilibrium between KIEL_E8 and the QTL. To identify the biological function of KIEL_E8, we extended the sequence for 869 bp by 5′-RACE. A 560-bp fragment of this shows a 90.9% similarity to a gene encoding a cysteine- and histidine-rich cytoplasmic protein in mouse. Although such a protein may have a regulatory function for lactation and a linkage disequilibrium between the EST marker and the QTL has been observed, it remains to be elucidated whether they are identical or not. Nevertheless, KIEL_E8 will be an efficient marker to perform marker-assisted selection in the Holstein-Friesian population. Received 20 October 2000 / Accepted: 11 April 2001  相似文献   

20.
The methods of microthin-layer chromatography on plates with silica gel and disc-electrophoresis in PAAG are used to determine the lipid and protein composition of fat globule membranes of cow milk on the first (foremilk) and the tenth day (milk) of lactation as well as of the buttermilk, a by-product of the technological processing of milk. Differences are found in the quantitative content of the basic classes of lipids and proteins in membranes of fat globules produced from foremilk and milk of cows. The membranes of buttermilk and milk fat globules are characterized by the identical qualitative and similar quantitative chemical composition, that permits using buttermilk as easily available and rich source of components from membranes of cow milk fat globules in the first place of phospholipids and sterols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号